Артиновы кольца с нильпотентной присоединенной группой
Нехай R — артинове кільце, необов'язково з одиницею, Z(R) — його центр i R⁰ — група оборотних елементів кільця R відносно операції a о b = a + b + ab. Доводиться, що приєднана група R⁰ нільпотентна та множина Z(R)+R⁰ породжує R як кільце тоді і тільки тоді, коли R є прямою сумою скінченного чис...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164957 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Артиновы кольца с нильпотентной присоединенной группой / Р.Ю. Евстафьев // Український математичний журнал. — 2006. — Т. 58, № 3. — С. 417–426. — Бібліогр.: 13 назв. — рос. |