Теорема Скитовича - Дармуа для дискретных и компактных вполне несвязных абелевых групп

Класична теорема Скитовича-Дармуа стверджує, що гауссівські розподіли на дійсній прямій характеризуються незалежністю двох лінійних форм від n незалежних випадкових величин. У цій статті теорему Скитовича-Дармуа узагальнено на дискретні абелеві групи, компактні цілком незв'язні абелеві групи, а...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Мазур, И.П.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2013
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165586
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Теорема Скитовича - Дармуа для дискретных и компактных вполне несвязных абелевых групп / И.П. Мазур // Український математичний журнал. — 2013. — Т. 65, № 7. — С. 946–960. — Бібліогр.: 19 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine