Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions
We supplement recent results on a class of Bernstein–Durrmeyer operators preserving linear functions. This is done by discussing two limiting cases and proving quantitative Voronovskaya-type assertions involving the first-order and second-order moduli of smoothness. The results generalize and improv...
Saved in:
Date: | 2010 |
---|---|
Main Authors: | Gonska, H., Peltenia, R. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2010
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/166181 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions / H. Gonska, R.Peltenia // Український математичний журнал. — 2010. — Т. 62, № 7. — С. 913–922. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Bernstein-Type Theorems and Uniqueness Theorems
by: Logvinenko, V., et al.
Published: (2004) -
Some approximation properties of Szasz–Mirakyan–Bernstein operators of the Chlodovsky type
by: Tunc, T., et al.
Published: (2014) -
On the Bernstein - Walsh-type lemmas in regions of the complex plane
by: Abdullayev, F.G., et al.
Published: (2011) -
Rate of convergence for Szász-Bézier operators
by: Gupta Vijay
Published: (2005) -
On spectra of a certain class of quadratic operator pencils with one-dimensional linear part
by: Pivovarchik, V.N.
Published: (2007)