Finite-Dimensional Reductions of Conservative Dynamical Systems and Numerical Analysis. I

We study infinite-dimensional Liouville–Lax integrable nonlinear dynamical systems. For these systems, we consider the problem of finding an appropriate set of initial conditions leading to typical solutions such as solitons and traveling waves. We develop an approach to the solution of this problem...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2001
Автори: Prykarpatsky, A.K., Brzychczy, S., Samoilenko, V.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2001
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/172153
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Finite-Dimensional Reductions of Conservative Dynamical Systems and Numerical Analysis. I / A.K. Prykarpatsky, S. Brzychczy, V.G. Samoilenko // Український математичний журнал. — 2001. — Т. 53, № 2. — С. 220-228. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We study infinite-dimensional Liouville–Lax integrable nonlinear dynamical systems. For these systems, we consider the problem of finding an appropriate set of initial conditions leading to typical solutions such as solitons and traveling waves. We develop an approach to the solution of this problem based on the exact reduction of a given nonlinear dynamical system to its finite-dimensional invariant submanifolds and the subsequent investigation of the system of ordinary differential equations obtained by qualitative analysis. The efficiency of the approach proposed is demonstrated by the examples of the Korteweg–de Vries equation, the modified nonlinear Schrödinger equation, and a hydrodynamic model.