Про двочленну асимптотику цілого ряду Діріхле
Нехай M(σ) — максимум модуля i μ(σ)— максимальний член цілого ряду Діріхле з невідємними зростаючими до ∞ показпиками λn. Знайдено умову на λn для еквівалентності співвідношень lnμ(σ,F) ≤ Φ₁(σ)+(1+o(1))τΦ₂(σ)(σ→+∞) i lnM(σ,F) ≤ Φ₁(σ)+(1+(1))τΦ₂(σ)(σ→+∞) при деяких умовах на функції Φ₁ i Φ₂....
Збережено в:
Дата: | 2001 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут математики НАН України
2001
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/172192 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Про двочленну асимптотику цілого ряду Діріхле / М.М. Шеремета // Український математичний журнал. — 2001. — Т. 53, № 4. — С. 542-549. — Бібліогр.: 5 назв. — укр. |