On Continuity of the Invariant Torus for Countable System of Difference Equations Dependent on Parameters
By using the method of the Green – Samoilenko function, an invariant torus is constructed for a system of discrete equations which are defined on tori in the space of bounded number sequences. Sufficient conditions are established for continuous dependence of the invariant torus on the angular va...
Збережено в:
Дата: | 2001 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2001
|
Назва видання: | Нелінійні коливання |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/174691 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Continuity of the Invariant Torus for Countable System of Difference Equations Dependent on Parameters / N.A. Marchuk // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 316-325 . — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-174691 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1746912021-01-28T01:26:58Z On Continuity of the Invariant Torus for Countable System of Difference Equations Dependent on Parameters Marchuk, N.A. By using the method of the Green – Samoilenko function, an invariant torus is constructed for a system of discrete equations which are defined on tori in the space of bounded number sequences. Sufficient conditions are established for continuous dependence of the invariant torus on the angular variable and the parameter contained in this system. 2001 Article On Continuity of the Invariant Torus for Countable System of Difference Equations Dependent on Parameters / N.A. Marchuk // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 316-325 . — Бібліогр.: 6 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/174691 en Нелінійні коливання Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
By using the method of the Green – Samoilenko function, an invariant torus is constructed
for a system of discrete equations which are defined on tori in the space of bounded number
sequences. Sufficient conditions are established for continuous dependence of the invariant torus
on the angular variable and the parameter contained in this system. |
format |
Article |
author |
Marchuk, N.A. |
spellingShingle |
Marchuk, N.A. On Continuity of the Invariant Torus for Countable System of Difference Equations Dependent on Parameters Нелінійні коливання |
author_facet |
Marchuk, N.A. |
author_sort |
Marchuk, N.A. |
title |
On Continuity of the Invariant Torus for Countable System of Difference Equations Dependent on Parameters |
title_short |
On Continuity of the Invariant Torus for Countable System of Difference Equations Dependent on Parameters |
title_full |
On Continuity of the Invariant Torus for Countable System of Difference Equations Dependent on Parameters |
title_fullStr |
On Continuity of the Invariant Torus for Countable System of Difference Equations Dependent on Parameters |
title_full_unstemmed |
On Continuity of the Invariant Torus for Countable System of Difference Equations Dependent on Parameters |
title_sort |
on continuity of the invariant torus for countable system of difference equations dependent on parameters |
publisher |
Інститут математики НАН України |
publishDate |
2001 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/174691 |
citation_txt |
On Continuity of the Invariant Torus for Countable System of Difference Equations Dependent on Parameters / N.A. Marchuk // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 316-325 . — Бібліогр.: 6 назв. — англ. |
series |
Нелінійні коливання |
work_keys_str_mv |
AT marchukna oncontinuityoftheinvarianttorusforcountablesystemofdifferenceequationsdependentonparameters |
first_indexed |
2023-10-18T22:36:56Z |
last_indexed |
2023-10-18T22:36:56Z |
_version_ |
1796155981178077184 |