Global robust exponential stability for Hopfield neural networks with non-Lipschitz activation functions

This paper is concerned with the problem of the global robust exponential stability for Hopfield neural networks with norm-bounded parameter uncertainties and inverse Holder neuron activation functions. By ¨ applying Brouwer degree properties and some analysis techniques, the existence and uniquenes...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Hongtao Yu, Huaiqin Wu
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/175586
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Global robust exponential stability for Hopfield neural networks with non-Lipschitz activation functions / Hongtao Yu, Huaiqin Wu // Нелінійні коливання. — 2012. — Т. 15, № 1. — С. 127-138. — Бібліогр.: 26 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-175586
record_format dspace
spelling irk-123456789-1755862021-02-02T01:27:58Z Global robust exponential stability for Hopfield neural networks with non-Lipschitz activation functions Hongtao Yu Huaiqin Wu This paper is concerned with the problem of the global robust exponential stability for Hopfield neural networks with norm-bounded parameter uncertainties and inverse Holder neuron activation functions. By ¨ applying Brouwer degree properties and some analysis techniques, the existence and uniqueness of the equilibrium point are investigated. Based on the Lyapunov stability theory, a global robust exponential stability criterion is derived in terms of linear matrix inequality (LMI). Two numerical examples are provided to demonstrate the effectiveness and validity of the proposed robust stability results. Розглянуто задачу глобальної робастної експоненцiальної стiйкостi для нейронних мереж Хопфiльда з обмеженими за нормою параметричною невизначенiстю та оберненими функцiями Гельдера нейронної активацiї. Використовуючи властивостi ступеня Брауера та результати з аналiзу, вивчено питання iснування та єдиностi точки рiвноваги. Критерiй глобальної робастної експоненцiальної стiйкостi в термiнах лiнiйної матричної нерiвностi отримано з використанням теорiї стiйкостi Ляпунова. Наведено два числових приклади для iлюстрацiї ефективностi та дiєвостi наведених результатiв. 2012 Article Global robust exponential stability for Hopfield neural networks with non-Lipschitz activation functions / Hongtao Yu, Huaiqin Wu // Нелінійні коливання. — 2012. — Т. 15, № 1. — С. 127-138. — Бібліогр.: 26 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/175586 517.9 en Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This paper is concerned with the problem of the global robust exponential stability for Hopfield neural networks with norm-bounded parameter uncertainties and inverse Holder neuron activation functions. By ¨ applying Brouwer degree properties and some analysis techniques, the existence and uniqueness of the equilibrium point are investigated. Based on the Lyapunov stability theory, a global robust exponential stability criterion is derived in terms of linear matrix inequality (LMI). Two numerical examples are provided to demonstrate the effectiveness and validity of the proposed robust stability results.
format Article
author Hongtao Yu
Huaiqin Wu
spellingShingle Hongtao Yu
Huaiqin Wu
Global robust exponential stability for Hopfield neural networks with non-Lipschitz activation functions
Нелінійні коливання
author_facet Hongtao Yu
Huaiqin Wu
author_sort Hongtao Yu
title Global robust exponential stability for Hopfield neural networks with non-Lipschitz activation functions
title_short Global robust exponential stability for Hopfield neural networks with non-Lipschitz activation functions
title_full Global robust exponential stability for Hopfield neural networks with non-Lipschitz activation functions
title_fullStr Global robust exponential stability for Hopfield neural networks with non-Lipschitz activation functions
title_full_unstemmed Global robust exponential stability for Hopfield neural networks with non-Lipschitz activation functions
title_sort global robust exponential stability for hopfield neural networks with non-lipschitz activation functions
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/175586
citation_txt Global robust exponential stability for Hopfield neural networks with non-Lipschitz activation functions / Hongtao Yu, Huaiqin Wu // Нелінійні коливання. — 2012. — Т. 15, № 1. — С. 127-138. — Бібліогр.: 26 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT hongtaoyu globalrobustexponentialstabilityforhopfieldneuralnetworkswithnonlipschitzactivationfunctions
AT huaiqinwu globalrobustexponentialstabilityforhopfieldneuralnetworkswithnonlipschitzactivationfunctions
first_indexed 2023-10-18T22:39:10Z
last_indexed 2023-10-18T22:39:10Z
_version_ 1796156080595664896