A family of doubly stochastic matrices involving Chebyshev polynomials
A doubly stochastic matrix is a square matrix A = (aij) of non-negative real numbers such that ∑i aij =∑j aij =1. The Chebyshev polynomial of the first kind is defined by the recurrence relation T₀ (x) = 1, T₁ (x) = x, and Tn+1(x) = 2xTn(x) − Tn−1(x). In this paper, we show a 2ᵏ ×2ᵏ (for each intege...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2019
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188430 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A family of doubly stochastic matrices involving Chebyshev polynomials / T. Ahmed, J.M.R. Caballero // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 155–164. — Бібліогр.: 2 назв. — англ. |