On p-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups
Let G be a finite group and P be a p-subgroup of G. If P is a Sylow subgroup of some normal subgroup of G, then we say that P is normally embedded in G. Groups with normally embedded maximal subgroups of Sylow p-subgroup, where (|G|, p − 1) = 1, are studied. In particular, the p-nilpotency of such g...
Збережено в:
Дата: | 2020 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2020
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188509 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On p-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups / A. Trofimuk // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 139–146. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188509 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1885092023-03-04T01:27:03Z On p-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups Trofimuk, A. Let G be a finite group and P be a p-subgroup of G. If P is a Sylow subgroup of some normal subgroup of G, then we say that P is normally embedded in G. Groups with normally embedded maximal subgroups of Sylow p-subgroup, where (|G|, p − 1) = 1, are studied. In particular, the p-nilpotency of such groups is proved. 2020 Article On p-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups / A. Trofimuk // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 139–146. — Бібліогр.: 9 назв. — англ. 1726-3255 DOI:10.12958/adm1128 2010 MSC: 20D10 http://dspace.nbuv.gov.ua/handle/123456789/188509 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let G be a finite group and P be a p-subgroup of G. If P is a Sylow subgroup of some normal subgroup of G, then we say that P is normally embedded in G. Groups with normally embedded maximal subgroups of Sylow p-subgroup, where (|G|, p − 1) = 1, are studied. In particular, the p-nilpotency of such groups is proved. |
format |
Article |
author |
Trofimuk, A. |
spellingShingle |
Trofimuk, A. On p-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups Algebra and Discrete Mathematics |
author_facet |
Trofimuk, A. |
author_sort |
Trofimuk, A. |
title |
On p-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups |
title_short |
On p-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups |
title_full |
On p-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups |
title_fullStr |
On p-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups |
title_full_unstemmed |
On p-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups |
title_sort |
on p-nilpotency of finite group with normally embedded maximal subgroups of some sylow subgroups |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2020 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188509 |
citation_txt |
On p-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups / A. Trofimuk // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 139–146. — Бібліогр.: 9 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT trofimuka onpnilpotencyoffinitegroupwithnormallyembeddedmaximalsubgroupsofsomesylowsubgroups |
first_indexed |
2023-10-18T23:08:31Z |
last_indexed |
2023-10-18T23:08:31Z |
_version_ |
1796157355648352256 |