Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma
This work is a part of acomplex investigation of the interaction of Cu-W composite materials with thermal electric arc discharge plasma. The plasma of 3.5 A DC arc discharge between novel Cu-W composite materials, fabricated by shock pressing technology at the temperature of 750°C, was studied at th...
Saved in:
Date: | 2022 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2022
|
Series: | Problems of Atomic Science and Technology |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/195906 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma / A. Murmantsev, A. Veklich, V. Boretskij, M. Kleshych, S. Fesenko, M. Bartlova // Problems of Atomic Science and Technology. — 2022. — № 6. — С. 134-138. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195906 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1959062023-12-08T13:01:31Z Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma Murmantsev, A. Veklich, A. Boretskij, V. Kleshych, M. Fesenko, S. Bartlova, M. Low temperature plasma and plasma technologies This work is a part of acomplex investigation of the interaction of Cu-W composite materials with thermal electric arc discharge plasma. The plasma of 3.5 A DC arc discharge between novel Cu-W composite materials, fabricated by shock pressing technology at the temperature of 750°C, was studied at this stage. Spectra of such plasma emission were registered and treated to determine the radial distributions of plasma temperature in three different cross-sections of the plasma channel, namely in near-cathode, near-anode and middle cross-sections. Описано частину комплексного дослідження взаємодії Cu-W композитних матеріалів з термічною плазмою електродугового розряду. На цьому етапі роботи досліджувалась плазма дугового розряду постійного струму 3,5 А між новітніми композитними матеріалами Cu-W, які виготовлені за технологією ударного пресування при температурі 750°C. Зареєстровано та оброблено спектри випромінювання такої плазми з метою визначення радіального розподілу температури в трьох різних поперечних перерізах плазмового каналу, а саме в прикатодному, прианодному та середньому перерізах. 2022 Article Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma / A. Murmantsev, A. Veklich, V. Boretskij, M. Kleshych, S. Fesenko, M. Bartlova // Problems of Atomic Science and Technology. — 2022. — № 6. — С. 134-138. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 52.70.-m, 52.80.Mg DOI: https://doi.org/10.46813/2022-142-134 http://dspace.nbuv.gov.ua/handle/123456789/195906 en Problems of Atomic Science and Technology Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Murmantsev, A. Veklich, A. Boretskij, V. Kleshych, M. Fesenko, S. Bartlova, M. Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma Problems of Atomic Science and Technology |
description |
This work is a part of acomplex investigation of the interaction of Cu-W composite materials with thermal electric arc discharge plasma. The plasma of 3.5 A DC arc discharge between novel Cu-W composite materials, fabricated by shock pressing technology at the temperature of 750°C, was studied at this stage. Spectra of such plasma emission were registered and treated to determine the radial distributions of plasma temperature in three different cross-sections of the plasma channel, namely in near-cathode, near-anode and middle cross-sections. |
format |
Article |
author |
Murmantsev, A. Veklich, A. Boretskij, V. Kleshych, M. Fesenko, S. Bartlova, M. |
author_facet |
Murmantsev, A. Veklich, A. Boretskij, V. Kleshych, M. Fesenko, S. Bartlova, M. |
author_sort |
Murmantsev, A. |
title |
Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma |
title_short |
Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma |
title_full |
Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma |
title_fullStr |
Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma |
title_full_unstemmed |
Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma |
title_sort |
peculiarities of interaction of cu-w composite materials with thermal arc discharge plasma |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2022 |
topic_facet |
Low temperature plasma and plasma technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195906 |
citation_txt |
Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma / A. Murmantsev, A. Veklich, V. Boretskij, M. Kleshych, S. Fesenko, M. Bartlova // Problems of Atomic Science and Technology. — 2022. — № 6. — С. 134-138. — Бібліогр.: 15 назв. — англ. |
series |
Problems of Atomic Science and Technology |
work_keys_str_mv |
AT murmantseva peculiaritiesofinteractionofcuwcompositematerialswiththermalarcdischargeplasma AT veklicha peculiaritiesofinteractionofcuwcompositematerialswiththermalarcdischargeplasma AT boretskijv peculiaritiesofinteractionofcuwcompositematerialswiththermalarcdischargeplasma AT kleshychm peculiaritiesofinteractionofcuwcompositematerialswiththermalarcdischargeplasma AT fesenkos peculiaritiesofinteractionofcuwcompositematerialswiththermalarcdischargeplasma AT bartlovam peculiaritiesofinteractionofcuwcompositematerialswiththermalarcdischargeplasma |
first_indexed |
2025-07-17T00:10:38Z |
last_indexed |
2025-07-17T00:10:38Z |
_version_ |
1837850730643324928 |
fulltext |
ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142).
134 Series: Plasma Physics (28), p. 134-138.
https://doi.org/10.46813/2022-142-134
PECULIARITIES OF INTERACTION OF Cu-W COMPOSITE
MATERIALS WITH THERMAL ARC DISCHARGE PLASMA
A. Murmantsev
1
, A. Veklich
1
, V. Boretskij
1
, M. Kleshych
1
, S. Fesenko
1
, M. Bartlova
2
1
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine;
2
Brno University of Technology, Brno, Czech Republic
E-mail: murmantsev.aleksandr@gmail.com
This work is a part of acomplex investigation of the interaction of Cu-W composite materials with thermal
electric arc discharge plasma. The plasma of 3.5 A DC arc discharge between novel Cu-W composite materials,
fabricated by shock pressing technology at the temperature of 750°C, was studied at this stage. Spectra of such
plasma emission were registered and treated to determine the radial distributions of plasma temperature in three
different cross-sections of the plasma channel, namely in near-cathode, near-anode and middle cross-sections.
PACS: 52.70.-m, 52.80.Mg
INTRODUCTION
Nowadays, there is still interest growing in studying the
thermal effect of the plasma of electric discharges, which
occur during the operation of switching devices, on their
electrodes/contacts surface. The implementation of
innovative developments continues and the main research
approaches in this field are permanently improved and
optimized. The reason for this development is the need to
meet the necessities of the power industry.
So, for example, due to the need to increase the
productivity of arc welding, compositions of two arcs are
being developed [1] (tandem arc welding), a combination
of a laser beam with an arc [2] (hybrid laser-arc welding),
the use of plasmatrons [3] (plasma welding) and the
application of pulse power sources [4] (pulse arc welding).
Such new trends, even with small improvements in
efficiency and productivity, can make a significant
contribution to industries such as shipbuilding and aircraft
construction, which require a large volume of high-quality
welds.
Moreover, new variants of already known processes of
plasma sputtering of solutions and suspensions are being
developed [5], the efficiency of creating thin films by the
magnetron method is improved [6], variations are
increased and the characteristics of synthesized solutions
with nanoparticles are improved [7], etc.
In addition to the direct practical application of thermal
plasma, there is a study of its negative effect on the
materials of contacts and electrodes of switching devices. It
is well-known, during the switching of electrical circuits
(for example, in electric and gas switches for high and
medium voltage equipment, in collector motors,
generators, electric trains, in switches of distribution
systems of medium and high degree of load, etc.), an
electric arc occurs, which causes significant erosion of
contact materials. Such a process naturally leads to a
reduction in the service life, a decrease in work efficiency,
and a number of other negative consequences in such
devices.
Obviously, to prevent or solve such problems in
switching devices, there is a need to create novel and
improve existing electrodes and contact materials. One
such material is a composite based on copper and tungsten.
Composite Cu-W electrodes are in great demand due to
the wide possibilities of their practical application, such as
welding electrodes, electrical contacts, materials for heat
dissipation in integrated circuits with a high degree of
integration, arc tips and microwave materials, high-
temperature erosion materials, ballasts of various shapes
and sizes, jet blades, X-ray screens, divertor plates for
thermonuclear reactors [8, 9], etc.
The main aim of this work, as a part of the complex
investigation, is to carry out the preliminary diagnostics of
thermal plasma of electric arc discharge between
composite Cu-W electrodes by optical emission
spectroscopy techniques and determination of the
possibility of their use for investigation of the interaction of
thermal plasma of arc discharge with novel Cu-W
composite materials.
1. EXPERIMENT
The DC electric arc discharges of 3.5 A were initiated
between vertically-oriented square in section (5×5 mm)
electrodes made from Cu-W50 vol.% composite material
fabricated by shock pressing technology at the temperature
of 750 °C. The three different cross-sections of the plasma
channel, namely cross-sections near to anode and cathode
and in the middle cross-section between electrodes, were
investigated.
The registration device with spatial and spectral
resolution [10] was used to obtain the emission spectra of
plasma with Cu and W vapours admixtures from different
cross-sections of the arc channel. The images shown in
Fig. 1 were obtained by RGB CCD camera with the
exposure time of 1/400 s (a, c), 1/1000 s (b). Neutral filter
NG8 was used (a, c) [11]in order to extend the dynamic
range.
The spectra emission intensity converted into grayscale
with taking into account spectral sensitivity and absorption
coefficients of filter are shown in Fig. 2. Ten points in
radial directions from the axis of the plasma channel were
selected and spectral profiles of both Cu I and W I spectral
lines were selected and approximated by the Voigt function
in each of these points. Typical approximations of spectral
lines profiles are shown in Fig. 3. Thus, the spatial (radial)
profiles of each spectral lines were obtained (see Fig. 4).
mailto:murmantsev.aleksandr@gmail.com
ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142) 135
Fig. 1. Emission spectra with spatial and spectral resolution registered from near-anode (a), middle (b) and near-
cathode (c) cross-sections of arc discharge channel
a b c
Fig. 2. Emission spectra with spatial and spectral resolution with taking into account spectral sensitivity registered
from near-anode (a), middle (b) and near-cathode (c) cross-sections of arc discharge channel
a b
Fig. 3. Typical approximations of spectral profiles of Cu I 515.3 nm (a) and W I 500.6, 501.5 nm (b) lines by Voigt
function
a
b
c
514.4 514.9 515.4 515.9 516.4 516.9
0E+00
1E+08
2E+08
3E+08
4E+08
5E+08
6E+08
I, a.u.
Experimental data at r = 0 mm
Approximation by Voigt function
l, nm
Model Voigt
Equation y = nlf_voigt(x,y0,xc,A,wG,wL);
Plot 0
y0 2.13366E7 ± 0
xc 514.92045 ± 0.0014
A 1.74584E8 ± 3.18172E6
wG 0.102 ± 0.01956
wL 0.17315 ± 0.01191
Reduced Chi-Sqr 4.4396E13
R-Square (COD) 0.99776
Adj. R-Square 0.99743
Model Voigt
Equation y = nlf_voigt(x,y0,xc,A,wG,wL);
Plot 0.144
y0 2.13366E7 ± 0
xc 514.91977 ± 0.00142
A 1.67393E8 ± 3.26902E6
wG 0.08133 ± 0.02639
wL 0.17857 ± 0.01253
Reduced Chi-Sqr 4.55577E13
R-Square (COD) 0.99751
Adj. R-Square 0.99714
Model Voigt
Equation y = nlf_voigt(x,y0,xc,A,wG,wL);
Plot 0.288
y0 2.13366E7 ± 0
xc 514.91982 ± 0.0012
A 1.52956E8 ± 2.5727E6
wG 0.09272 ± 0.01926
wL 0.16661 ± 0.01067
Reduced Chi-Sqr 2.93618E13
R-Square (COD) 0.99819
Adj. R-Square 0.99792
Model Voigt
Equation y = nlf_voigt(x,y0,xc,A,wG,wL);
Plot 0.432
y0 2.13366E7 ± 0
xc 514.91831 ± 0.00118
A 1.32901E8 ± 2.37651E6
wG 0.1034 ± 0.01758
wL 0.14693 ± 0.01106
Reduced Chi-Sqr 2.61698E13
R-Square (COD) 0.99806
Adj. R-Square 0.99777
Model Voigt
Equation y = nlf_voigt(x,y0,xc,A,wG,wL);
Plot 0.576
y0 2.13366E7 ± 0
xc 514.92149 ± 0.00126
A 1.17382E8 ± 2.12913E6
wG 0.10471 ± 0.01702
wL 0.14866 ± 0.01109
Reduced Chi-Sqr 2.1485E13
R-Square (COD) 0.99793
Adj. R-Square 0.99762
Model Voigt
Equation y = nlf_voigt(x,y0,xc,A,wG,wL);
Plot 0.72
y0 2.13366E7 ± 0
xc 514.91817 ± 0.00122
A 9.32221E7 ± 1.79922E6
wG 0.1199 ± 0.01531
wL 0.12398 ± 0.01157
Reduced Chi-Sqr 1.60137E13
R-Square (COD) 0.99787
Adj. R-Square 0.99755
Model Voigt
Equation y = nlf_voigt(x,y0,xc,A,wG,wL);
Plot 0.864
y0 2.13366E7 ± 0
xc 514.91654 ± 0.00157
A 7.27744E7 ± 1.81747E6
wG 0.14067 ± 0.0163
wL 0.10286 ± 0.01473
Reduced Chi-Sqr 1.70859E13
R-Square (COD) 0.99654
Adj. R-Square 0.99602
Model Voigt
Equation y = nlf_voigt(x,y0,xc,A,wG,wL);
Plot 1.008
y0 2.13366E7 ± 0
xc 514.91148 ± 0.00187
A 4.88273E7 ± 1.71497E6
wG 0.12381 ± 0.02528
wL 0.09502 ± 0.01996
Reduced Chi-Sqr 1.55007E13
R-Square (COD) 0.99396
Adj. R-Square 0.99305
Model Voigt
Equation y = nlf_voigt(x,y0,xc,A,wG,wL);
Plot 1.152
y0 2.13366E7 ± 0
xc 514.91532 ± 0.00269
A 3.33523E7 ± 1.47141E6
wG 0.17994 ± 0.02139
wL 0.05337 ± 0.02504
Reduced Chi-Sqr 1.22589E13
R-Square (COD) 0.9906
Adj. R-Square 0.98919
Model Voigt
Equation y = nlf_voigt(x,y0,xc,A,wG,wL);
Plot 1.296
y0 2.13366E7 ± 0
xc 514.91325 ± 0.00584
A 1.68959E7 ± 1.74784E6
wG 0.2046 ± 0.04198
wL 0.00805 ± 0.05651
Reduced Chi-Sqr 1.88651E13
R-Square (COD) 0.95758
Adj. R-Square 0.95121
499.4 499.9 500.4 500.9 501.4 501.9 502.4
5.0E+07
1.0E+08
1.5E+08
2.0E+08
I, a.u. Experimental data at r = 0 mm
Approximation of W I 500.6 nm
Approximation of W I 501.5 nm
Cumulative Fit Peak
0
l, nm
136 ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142)
a b
Fig. 4. Typical approximations of spatial profiles of Cu I (a) and W I (b) lines by Gauss function (emission intensity
obtained from near-anode cross-section)
The Gauss function was used to approximate the spatial
profiles to obtain the differentiable function in order to
transform the observed emission intensity into its local
values by the Bockasten method [12].
These local values of emission intensity of selected
spectral lines were used to determine plasma
temperature by the Boltzmann plot technique [13].
2. RESULTS AND DISCUSSIONS
As mentioned above, both copper and tungsten
atomic spectral lines were used in this work. Namely,
the spectral profiles of Cu I 510.5, 515.3, 521.8 nm and
W I 468.1, 488.7, 498.3, 500.6, 501.5, and 522.5 nm
spectral lines were selected from spectra, approximated
and used in the determination of plasma temperature.
Typical Boltzmann plots on the basis of the
aforementioned spectral lines are shown in Fig. 5. The
spectroscopic data for each of these lines were
preliminarily selected in previous works [14, 15].
One can see, that approximating straight lines
coincide almost exactly with the calculated points on the
Boltzmann plot based on Cu I spectral lines, which
indicates that temperature is determined with high
accuracy (< 10 %).
The accuracy of temperature determination by plots
on the basis of W I spectral lines has a more significant
error (< 20 %). Such error is due to the narrow range of
energy of upper levels of the selected tungsten spectral
lines (0.82 eV compared with 2.38 eV of copper). It is
obvious, that the narrower the energy range, the greater
the error in determining the temperature for the same
errors in determining the value ln(Iλ
3
/gf).
The radial distributions of plasma temperature
determined by the Boltzmann plot technique based on
both Cu I and W I obtained from near-anode, middle
and near-cathode cross-sections of the arc discharge
channel are shown in Fig. 6.
One can see, that temperatures obtained in different
cross-sections differ along the discharge gap, especially
at the axial points (r = 0 mm) of the discharge channel.
This can be explained by a significant difference in
metal components concentrations at different points of
the arc. Naturally, the lower temperature can indicate
the higher content of metal evaporated from electrode’s
surface. Thus, it can be assumed, the material of the
composite electrode evaporates more strongly in the
near-cathode region compared to the near-anode one.
a
b
Fig. 5. Typical Boltzmann plots based on emission
intensity of Cu I 510.5, 515.3, 521.8 nm (a) and W I
468.1, 488.7, 498.3, 500.6, 501.5 and 522.5 nm (b)
spectral lines (emission intensity obtained from near-
anode cross-section)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0E+00
5.0E+07
1.0E+08
1.5E+08
2.0E+08
2.5E+08
Cu I 510.5 nm
Cu I 515.3 nm
Cu I 521.8 nm
Gauss Fit of Cu I 510.5 nm
Gauss Fit of Cu I 515.3 nm
Gauss Fit of Cu I 521.8 nm
C
u
I
5
1
0
.5
n
m
r, mm
I, a.u.
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1E+07
2E+07
3E+07
4E+07
5E+07
6E+07
I, a.u.
W I 488.7 nm
W I 500.6 nm
W I 501.5 nm
Gauss Fit of W I 488.7 nm
Gauss Fit of W I 500.6 nm
Gauss Fit of W I 501.5 nm
W
I
4
6
8
.1
n
m
r, mm
Model Gauss
Equation
y=y0 + (A/(w*sqrt(pi/2)))*exp(-2*((x-x
c)/w)^2)
Plot W I 500.6 nm
y0 -5.25758E8 ± 6.77609E9
xc -0.31557 ± 0.57544
w 8.70979 ± 55.04359
A 6.32489E9 ± 1.13984E11
Reduced Chi-Sqr 2.35394E12
R-Square (COD) 0.99025
Adj. R-Square 0.98538
Model Gauss
Equation
y=y0 + (A/(w*sqrt(pi/2)))*exp(-2*((x-x
c)/w)^2)
Plot W I 501.5 nm
y0 -1.91863E7 ± 4.62669E7
xc -0.20923 ± 0.3196
w 2.60552 ± 1.69404
A 2.15912E8 ± 2.9863E8
Reduced Chi-Sqr 1.62819E12
R-Square (COD) 0.99104
Adj. R-Square 0.98657
Model Gauss
Equation
y=y0 + (A/(w*sqrt(pi/2)))*exp(-2*((x-x
c)/w)^2)
Plot W I 522.5
y0 -9.61114E6 ± 4.76848E7
xc 0.06288 ± 0.21626
w 1.87788 ± 1.34401
A 1.43863E8 ± 2.15278E8
Reduced Chi-Sqr 1.0326E13
R-Square (COD) 0.96002
Adj. R-Square 0.94003
Model Gauss
Equation
y=y0 + (A/(w*sqrt(pi/2)))*exp(-2*((x-x
c)/w)^2)
Plot W I 551.45 nm
y0 -5.31692E8 ± 4.15222E10
xc -1.9422 ± 23.2363
w 14.79692 ± 608.03508
A 1.12027E10 ± 1.2348E12
Reduced Chi-Sqr 9.61002E12
R-Square (COD) 0.9554
Adj. R-Square 0.93309
3.5 4.0 4.5 5.0 5.5 6.0 6.5
42
44
46
48
510.5
515.3
521.8
ln(Il3/gf)
r = 0 mm
r = 0.58 mm
r = 1.3 mm
r
=
0
m
m
E, eV
2.4 2.6 2.8 3.0 3.2 3.4
38.0
38.5
39.0
39.5
40.0
40.5
41.0
468.1
488.7
498.3
500.6
501.5
522.5
r = 0 mm
r = 0.58 mm
r = 1.3 mm
r
=
0
m
m
E, eV
Equation y = a + b*x
Plot r = 0 mm
Weight No Weighting
Intercept 43.19273 ± 0.9659
Slope -1.17519 ± 0.31469
Residual Sum of Squares 0.18527
Pearson's r -0.88154
R-Square (COD) 0.77711
Adj. R-Square 0.72139
Equation y = a + b*x
Plot r = 0.14 mm
Weight No Weighting
Intercept 43.59393 ± 0.72885
Slope -1.35349 ± 0.23746
Residual Sum of Squares 0.10549
Pearson's r -0.9436
R-Square (COD) 0.89038
Adj. R-Square 0.86297
Equation y = a + b*x
Plot r = 1.15 mm
Weight No Weighting
Intercept 44.99216 ± 0.87764
Slope -2.03631 ± 0.28593
Residual Sum of Squares 0.15296
Pearson's r -0.96276
R-Square (COD) 0.9269
Adj. R-Square 0.90862
ln(Il3/gf)
ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142) 137
a
b
c
Fig. 6. Radial distributions of plasma temperature,
obtained by Boltzmann plot technique based on Cu I
and W I spectral lines registered from near-anode (a),
middle (b) and near-cathode (c) cross-sections of arc
discharge channel
Moreover, the radial distribution of temperatures
obtained on the basis of emission intensity of both
atomic copper and tungsten spectral lines coincides
within the range of measurements error at most radial
points of discharge channel. This allows us to draw the
conclusion that the local thermodynamic equilibrium is
realized in all three investigated cross-sections of the
discharge gap between the copper-tungsten composite
electrodes.
CONCLUSIONS
The novel Cu-W composite material fabricated by
shock pressing technology at the temperature of 750 °C
was studied in interaction with 3.5 A DC current arc
discharge plasma. Spectra of such plasma emission were
registered and treated to determine the radial
distributions of plasma temperature in three different
cross-sections of the plasma channel, namely in near-
cathode, near-anode and middle cross-sections.
It was found, that the radial distribution of
temperatures obtained on the basis of emission intensity
of both atomic copper and tungsten spectral lines
coincides within the range of measurements error at
most radial points of the discharge channel. This
indicates that local thermodynamic equilibrium can
realize in all three investigated cross-sections of the
discharge gap between the copper-tungsten composite
electrodes.
The results obtained in this work allow us to carry
out further investigations of the thermal plasma of
electric arc discharge between other types of novel Cu-
W composite electrodes, namely fabricated at variable
manufacturing parameters. Moreover, the erosion
resistance of all of these types of composite electrodes
should be estimated by determination of the content of
metal vapours in discharge gap.
ACKNOWLEDGEMENTS
This work has been partially carried out within the
framework of the EUROfusion Consortium, funded by
the European Union via the Euratom Research and
Training Programme (Grant Agreement № 101052200 ‒
EUROfusion). Views and opinions expressed are
however those of the author(s) only and do not
necessarily reflect those of the European Union or the
European Commission. Neither the European Union nor
the European Commission can be held responsible for
them. This work has been supported in part by the
bilateral Czech Republic – Ukrainian collaboration
project № M/42-2022 of Ministry of Education and
Science of Ukraine.
In addition, the authors are grateful to Dr. Oleksandr
Tolochyn from the Frantsevich Institute for Problems of
Materials Science NAS of Ukraine for the materials
provided under the cooperation agreement.
REFERENCES
1. M. Mohammadijoo, S. Kenny, L. Collins, et al.
Influence of cold-wire tandem submerged arc welding
parameters on weld geometry and microhardness of
microalloyed pipeline steels // Int. J. Adv. Manuf.
Technol. 2017, v. 88, p. 2249-2263,
https://doi.org/10.1007/s00170-016-8910-z.
2. B. Acherjee. Hybrid laser arc welding: State-of-art
review // Optics and Laser Technology. 2018, v. 99,
p. 60-71,
https://doi.org/10.1016/j.optlastec.2017.09.038.
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
4000
5000
6000
7000
8000
9000
10000
11000
12000
TCu, K
TW, K
r, mm
T, K
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
4000
5000
6000
7000
T, K
TCu, K
TW, K
r, mm
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
4000
5000
6000
7000
8000
9000
T, K
TCu, K
TW, K
r, mm
https://doi.org/10.1007/s00170-016-8910-z
https://doi.org/10.1016/j.optlastec.2017.09.038
138 ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142)
3. V. Shchitsyn, D. Belinin, Yu. Shchitsyn. Plasma
Welding of Aluminum Alloys with the Use of Two
Direct ARCS on Reverse-Polarity Current //
Metallurgist. 2016, v. 59, p. 1234-1237,
https://doi.org/10.1007/s11015-016-0243-5.
4. L. Wang, C. Zhang, C. Wu. Experimental study on
controlled pulse keyholing plasma arc welding assisted
by ultrasonic vibration // Int. J. Adv. Manuf. Technol.
2020, v. 107, p. 4995-5009,
https://doi.org/10.1007/s00170-020-05384-w.
5. P. Fauchais, G. Montavon, R. Lima, B. Marple.
Engineering a new class of thermal spray nano-based
microstructures from agglomerated nanostructured
particles, suspensions and solutions: an invited review //
Journal of Physics D: Applied Physics. 2011, v. 44(9),
p. 093001,
https://doi.org/10.1088/0022-3727/44/9/093001.
6. S. Ries, N. Bibinov, M. Rudolph, J. Schulze, S. Mráz.
Spatially resolved characterization of a dc magnetron
plasma using optical emission spectroscopy // Plasma
Sources Science and Technology. 2018, v. 27(9),
p. 094001,
https://doi.org/10.1088/1361-6595/aad6d9.
7. N. Sirotkin, A. Khlyustova, V. Titov, A. Agafonov.
Plasma assisted synthesis and deposition of
molybdenum oxide nanoparticles on polyethylene
terephthalate for photocatalytic degradation of
rhodamine B // Plasma Processes and Polymers. 2020,
v. 17(9), p. 2000012,
https://doi.org/10.1002/ppap.202000012.
8. V. Tsakiris, M. Lungu, E. Enescu, D. Pavelescua,
G. Dumitrescu, A. Radulian, V. Braic. W-Cu composite
materials for electrical contacts used in vacuum
contactors // Journal of Optoelectronics and Advanced
Materials. 2013, v. 15(9, 10), p.1090-1094.
9. H. Hashempour, H. Razavizadeh, Rezaie. Investi-
gation on Wear Mechanism of Thermochemically
Fabricated W-Cu Composites, Wear. 2010, v. 269,
p. 405-415.
10. A.N. Veklich, M.M. Kleshich, V.V. Vashchenko,
I.O. Kuzminska. Spectroscopy Peculiarities of Thermal
Plasma with Copper and Nickel Vapours // Problems of
Atomic Science and Technology. Series “Plasma
Electrons and New Methods of Accelerations” (98).
2015, № 4, p. 215-219.
11. A.M. Zhabina. Coloured optical glass: GOST 9411-
75. Moscow: “Publishing house of standards”, 1980,
50 p.
12. K. Bockasten. Transformation of Observed
Radiances into Radial Distribution of the Emission of a
Plasma // Journal of the Optical Society of America.
1960, № 9(51), p. 943-947.
13. V.V. Ninyovskij, A.M. Veklich, V.F. Boretskij,
A.A. Murmantsev. Plasma spectroscopy of electric
spark discharge between silver granules immersed in
water // 18th International Conference of Young
Scientists on Energy and Natural Sciences Issues, 2022,
May 24-27, Kaunas, Lithuania, p. 332-335.
14. I.L. Babich, V.F. Boretskij, A.N. Veklich,
R.V. Semenyshyn. Spectroscopic data and Stark
Broadening of Cu I and Ag I spectral lines: selection
and analysis // Advances in Space Research. 2014,
v. 54, p. 1254-1263,
http://dx.doi.org/10.1016/j.asr.2013.10.034.
15. A.N. Veklich, A.V. Lebid, T.A. Tmenova.
Spectroscopic Data of W I, Mo I and Cr I Spectral
Lines: Selection and Analysis // J. Astrophys. Astr.
2015, v. 36, p. 589-604,
https://doi.org/0. 10.1007/s12036-015-9342-0.
Article received 06.10.2022
ОСОБЛИВОСТІ ВЗАЄМОДІЇ КОМПОЗИТНИХ МАТЕРІАЛІВ Cu-W З ТЕРМІЧНОЮ ПЛАЗМОЮ
ДУГОВОГО РОЗРЯДУ
О. Мурманцев, А. Веклич, В. Борецький, М. Клешич, С. Фесенко, М. Бартлова
Описано частину комплексного дослідження взаємодії Cu-W композитних матеріалів з термічною
плазмою електродугового розряду. На цьому етапі роботи досліджувалась плазма дугового розряду
постійного струму 3,5 А між новітніми композитними матеріалами Cu-W, які виготовлені за технологією
ударного пресування при температурі 750°C. Зареєстровано та оброблено спектри випромінювання такої
плазми з метою визначення радіального розподілу температури в трьох різних поперечних перерізах
плазмового каналу, а саме в прикатодному, прианодному та середньому перерізах.
https://doi.org/10.1007/s11015-016-0243-5
https://doi.org/10.1007/s00170-020-05384-w
https://doi.org/10.1088/0022-3727/44/9/093001
https://doi.org/10.1088/1361-6595/aad6d9
https://doi.org/10.1002/ppap.202000012
http://dx.doi.org/10.1016/j.asr.2013.10.034
file:///C:/Users/vmakh/Downloads/10.1007/s12036-015-9342-0
|