Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma

This work is a part of acomplex investigation of the interaction of Cu-W composite materials with thermal electric arc discharge plasma. The plasma of 3.5 A DC arc discharge between novel Cu-W composite materials, fabricated by shock pressing technology at the temperature of 750°C, was studied at th...

Full description

Saved in:
Bibliographic Details
Date:2022
Main Authors: Murmantsev, A., Veklich, A., Boretskij, V., Kleshych, M., Fesenko, S., Bartlova, M.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2022
Series:Problems of Atomic Science and Technology
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/195906
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma / A. Murmantsev, A. Veklich, V. Boretskij, M. Kleshych, S. Fesenko, M. Bartlova // Problems of Atomic Science and Technology. — 2022. — № 6. — С. 134-138. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-195906
record_format dspace
spelling irk-123456789-1959062023-12-08T13:01:31Z Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma Murmantsev, A. Veklich, A. Boretskij, V. Kleshych, M. Fesenko, S. Bartlova, M. Low temperature plasma and plasma technologies This work is a part of acomplex investigation of the interaction of Cu-W composite materials with thermal electric arc discharge plasma. The plasma of 3.5 A DC arc discharge between novel Cu-W composite materials, fabricated by shock pressing technology at the temperature of 750°C, was studied at this stage. Spectra of such plasma emission were registered and treated to determine the radial distributions of plasma temperature in three different cross-sections of the plasma channel, namely in near-cathode, near-anode and middle cross-sections. Описано частину комплексного дослідження взаємодії Cu-W композитних матеріалів з термічною плазмою електродугового розряду. На цьому етапі роботи досліджувалась плазма дугового розряду постійного струму 3,5 А між новітніми композитними матеріалами Cu-W, які виготовлені за технологією ударного пресування при температурі 750°C. Зареєстровано та оброблено спектри випромінювання такої плазми з метою визначення радіального розподілу температури в трьох різних поперечних перерізах плазмового каналу, а саме в прикатодному, прианодному та середньому перерізах. 2022 Article Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma / A. Murmantsev, A. Veklich, V. Boretskij, M. Kleshych, S. Fesenko, M. Bartlova // Problems of Atomic Science and Technology. — 2022. — № 6. — С. 134-138. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 52.70.-m, 52.80.Mg DOI: https://doi.org/10.46813/2022-142-134 http://dspace.nbuv.gov.ua/handle/123456789/195906 en Problems of Atomic Science and Technology Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Low temperature plasma and plasma technologies
Low temperature plasma and plasma technologies
spellingShingle Low temperature plasma and plasma technologies
Low temperature plasma and plasma technologies
Murmantsev, A.
Veklich, A.
Boretskij, V.
Kleshych, M.
Fesenko, S.
Bartlova, M.
Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma
Problems of Atomic Science and Technology
description This work is a part of acomplex investigation of the interaction of Cu-W composite materials with thermal electric arc discharge plasma. The plasma of 3.5 A DC arc discharge between novel Cu-W composite materials, fabricated by shock pressing technology at the temperature of 750°C, was studied at this stage. Spectra of such plasma emission were registered and treated to determine the radial distributions of plasma temperature in three different cross-sections of the plasma channel, namely in near-cathode, near-anode and middle cross-sections.
format Article
author Murmantsev, A.
Veklich, A.
Boretskij, V.
Kleshych, M.
Fesenko, S.
Bartlova, M.
author_facet Murmantsev, A.
Veklich, A.
Boretskij, V.
Kleshych, M.
Fesenko, S.
Bartlova, M.
author_sort Murmantsev, A.
title Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma
title_short Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma
title_full Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma
title_fullStr Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma
title_full_unstemmed Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma
title_sort peculiarities of interaction of cu-w composite materials with thermal arc discharge plasma
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2022
topic_facet Low temperature plasma and plasma technologies
url http://dspace.nbuv.gov.ua/handle/123456789/195906
citation_txt Peculiarities of interaction of Cu-W composite materials with thermal arc discharge plasma / A. Murmantsev, A. Veklich, V. Boretskij, M. Kleshych, S. Fesenko, M. Bartlova // Problems of Atomic Science and Technology. — 2022. — № 6. — С. 134-138. — Бібліогр.: 15 назв. — англ.
series Problems of Atomic Science and Technology
work_keys_str_mv AT murmantseva peculiaritiesofinteractionofcuwcompositematerialswiththermalarcdischargeplasma
AT veklicha peculiaritiesofinteractionofcuwcompositematerialswiththermalarcdischargeplasma
AT boretskijv peculiaritiesofinteractionofcuwcompositematerialswiththermalarcdischargeplasma
AT kleshychm peculiaritiesofinteractionofcuwcompositematerialswiththermalarcdischargeplasma
AT fesenkos peculiaritiesofinteractionofcuwcompositematerialswiththermalarcdischargeplasma
AT bartlovam peculiaritiesofinteractionofcuwcompositematerialswiththermalarcdischargeplasma
first_indexed 2025-07-17T00:10:38Z
last_indexed 2025-07-17T00:10:38Z
_version_ 1837850730643324928
fulltext ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142). 134 Series: Plasma Physics (28), p. 134-138. https://doi.org/10.46813/2022-142-134 PECULIARITIES OF INTERACTION OF Cu-W COMPOSITE MATERIALS WITH THERMAL ARC DISCHARGE PLASMA A. Murmantsev 1 , A. Veklich 1 , V. Boretskij 1 , M. Kleshych 1 , S. Fesenko 1 , M. Bartlova 2 1 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; 2 Brno University of Technology, Brno, Czech Republic E-mail: murmantsev.aleksandr@gmail.com This work is a part of acomplex investigation of the interaction of Cu-W composite materials with thermal electric arc discharge plasma. The plasma of 3.5 A DC arc discharge between novel Cu-W composite materials, fabricated by shock pressing technology at the temperature of 750°C, was studied at this stage. Spectra of such plasma emission were registered and treated to determine the radial distributions of plasma temperature in three different cross-sections of the plasma channel, namely in near-cathode, near-anode and middle cross-sections. PACS: 52.70.-m, 52.80.Mg INTRODUCTION Nowadays, there is still interest growing in studying the thermal effect of the plasma of electric discharges, which occur during the operation of switching devices, on their electrodes/contacts surface. The implementation of innovative developments continues and the main research approaches in this field are permanently improved and optimized. The reason for this development is the need to meet the necessities of the power industry. So, for example, due to the need to increase the productivity of arc welding, compositions of two arcs are being developed [1] (tandem arc welding), a combination of a laser beam with an arc [2] (hybrid laser-arc welding), the use of plasmatrons [3] (plasma welding) and the application of pulse power sources [4] (pulse arc welding). Such new trends, even with small improvements in efficiency and productivity, can make a significant contribution to industries such as shipbuilding and aircraft construction, which require a large volume of high-quality welds. Moreover, new variants of already known processes of plasma sputtering of solutions and suspensions are being developed [5], the efficiency of creating thin films by the magnetron method is improved [6], variations are increased and the characteristics of synthesized solutions with nanoparticles are improved [7], etc. In addition to the direct practical application of thermal plasma, there is a study of its negative effect on the materials of contacts and electrodes of switching devices. It is well-known, during the switching of electrical circuits (for example, in electric and gas switches for high and medium voltage equipment, in collector motors, generators, electric trains, in switches of distribution systems of medium and high degree of load, etc.), an electric arc occurs, which causes significant erosion of contact materials. Such a process naturally leads to a reduction in the service life, a decrease in work efficiency, and a number of other negative consequences in such devices. Obviously, to prevent or solve such problems in switching devices, there is a need to create novel and improve existing electrodes and contact materials. One such material is a composite based on copper and tungsten. Composite Cu-W electrodes are in great demand due to the wide possibilities of their practical application, such as welding electrodes, electrical contacts, materials for heat dissipation in integrated circuits with a high degree of integration, arc tips and microwave materials, high- temperature erosion materials, ballasts of various shapes and sizes, jet blades, X-ray screens, divertor plates for thermonuclear reactors [8, 9], etc. The main aim of this work, as a part of the complex investigation, is to carry out the preliminary diagnostics of thermal plasma of electric arc discharge between composite Cu-W electrodes by optical emission spectroscopy techniques and determination of the possibility of their use for investigation of the interaction of thermal plasma of arc discharge with novel Cu-W composite materials. 1. EXPERIMENT The DC electric arc discharges of 3.5 A were initiated between vertically-oriented square in section (5×5 mm) electrodes made from Cu-W50 vol.% composite material fabricated by shock pressing technology at the temperature of 750 °C. The three different cross-sections of the plasma channel, namely cross-sections near to anode and cathode and in the middle cross-section between electrodes, were investigated. The registration device with spatial and spectral resolution [10] was used to obtain the emission spectra of plasma with Cu and W vapours admixtures from different cross-sections of the arc channel. The images shown in Fig. 1 were obtained by RGB CCD camera with the exposure time of 1/400 s (a, c), 1/1000 s (b). Neutral filter NG8 was used (a, c) [11]in order to extend the dynamic range. The spectra emission intensity converted into grayscale with taking into account spectral sensitivity and absorption coefficients of filter are shown in Fig. 2. Ten points in radial directions from the axis of the plasma channel were selected and spectral profiles of both Cu I and W I spectral lines were selected and approximated by the Voigt function in each of these points. Typical approximations of spectral lines profiles are shown in Fig. 3. Thus, the spatial (radial) profiles of each spectral lines were obtained (see Fig. 4). mailto:murmantsev.aleksandr@gmail.com ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142) 135 Fig. 1. Emission spectra with spatial and spectral resolution registered from near-anode (a), middle (b) and near- cathode (c) cross-sections of arc discharge channel a b c Fig. 2. Emission spectra with spatial and spectral resolution with taking into account spectral sensitivity registered from near-anode (a), middle (b) and near-cathode (c) cross-sections of arc discharge channel a b Fig. 3. Typical approximations of spectral profiles of Cu I 515.3 nm (a) and W I 500.6, 501.5 nm (b) lines by Voigt function a b c 514.4 514.9 515.4 515.9 516.4 516.9 0E+00 1E+08 2E+08 3E+08 4E+08 5E+08 6E+08 I, a.u. Experimental data at r = 0 mm Approximation by Voigt function l, nm Model Voigt Equation y = nlf_voigt(x,y0,xc,A,wG,wL); Plot 0 y0 2.13366E7 ± 0 xc 514.92045 ± 0.0014 A 1.74584E8 ± 3.18172E6 wG 0.102 ± 0.01956 wL 0.17315 ± 0.01191 Reduced Chi-Sqr 4.4396E13 R-Square (COD) 0.99776 Adj. R-Square 0.99743 Model Voigt Equation y = nlf_voigt(x,y0,xc,A,wG,wL); Plot 0.144 y0 2.13366E7 ± 0 xc 514.91977 ± 0.00142 A 1.67393E8 ± 3.26902E6 wG 0.08133 ± 0.02639 wL 0.17857 ± 0.01253 Reduced Chi-Sqr 4.55577E13 R-Square (COD) 0.99751 Adj. R-Square 0.99714 Model Voigt Equation y = nlf_voigt(x,y0,xc,A,wG,wL); Plot 0.288 y0 2.13366E7 ± 0 xc 514.91982 ± 0.0012 A 1.52956E8 ± 2.5727E6 wG 0.09272 ± 0.01926 wL 0.16661 ± 0.01067 Reduced Chi-Sqr 2.93618E13 R-Square (COD) 0.99819 Adj. R-Square 0.99792 Model Voigt Equation y = nlf_voigt(x,y0,xc,A,wG,wL); Plot 0.432 y0 2.13366E7 ± 0 xc 514.91831 ± 0.00118 A 1.32901E8 ± 2.37651E6 wG 0.1034 ± 0.01758 wL 0.14693 ± 0.01106 Reduced Chi-Sqr 2.61698E13 R-Square (COD) 0.99806 Adj. R-Square 0.99777 Model Voigt Equation y = nlf_voigt(x,y0,xc,A,wG,wL); Plot 0.576 y0 2.13366E7 ± 0 xc 514.92149 ± 0.00126 A 1.17382E8 ± 2.12913E6 wG 0.10471 ± 0.01702 wL 0.14866 ± 0.01109 Reduced Chi-Sqr 2.1485E13 R-Square (COD) 0.99793 Adj. R-Square 0.99762 Model Voigt Equation y = nlf_voigt(x,y0,xc,A,wG,wL); Plot 0.72 y0 2.13366E7 ± 0 xc 514.91817 ± 0.00122 A 9.32221E7 ± 1.79922E6 wG 0.1199 ± 0.01531 wL 0.12398 ± 0.01157 Reduced Chi-Sqr 1.60137E13 R-Square (COD) 0.99787 Adj. R-Square 0.99755 Model Voigt Equation y = nlf_voigt(x,y0,xc,A,wG,wL); Plot 0.864 y0 2.13366E7 ± 0 xc 514.91654 ± 0.00157 A 7.27744E7 ± 1.81747E6 wG 0.14067 ± 0.0163 wL 0.10286 ± 0.01473 Reduced Chi-Sqr 1.70859E13 R-Square (COD) 0.99654 Adj. R-Square 0.99602 Model Voigt Equation y = nlf_voigt(x,y0,xc,A,wG,wL); Plot 1.008 y0 2.13366E7 ± 0 xc 514.91148 ± 0.00187 A 4.88273E7 ± 1.71497E6 wG 0.12381 ± 0.02528 wL 0.09502 ± 0.01996 Reduced Chi-Sqr 1.55007E13 R-Square (COD) 0.99396 Adj. R-Square 0.99305 Model Voigt Equation y = nlf_voigt(x,y0,xc,A,wG,wL); Plot 1.152 y0 2.13366E7 ± 0 xc 514.91532 ± 0.00269 A 3.33523E7 ± 1.47141E6 wG 0.17994 ± 0.02139 wL 0.05337 ± 0.02504 Reduced Chi-Sqr 1.22589E13 R-Square (COD) 0.9906 Adj. R-Square 0.98919 Model Voigt Equation y = nlf_voigt(x,y0,xc,A,wG,wL); Plot 1.296 y0 2.13366E7 ± 0 xc 514.91325 ± 0.00584 A 1.68959E7 ± 1.74784E6 wG 0.2046 ± 0.04198 wL 0.00805 ± 0.05651 Reduced Chi-Sqr 1.88651E13 R-Square (COD) 0.95758 Adj. R-Square 0.95121 499.4 499.9 500.4 500.9 501.4 501.9 502.4 5.0E+07 1.0E+08 1.5E+08 2.0E+08 I, a.u. Experimental data at r = 0 mm Approximation of W I 500.6 nm Approximation of W I 501.5 nm Cumulative Fit Peak 0 l, nm 136 ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142) a b Fig. 4. Typical approximations of spatial profiles of Cu I (a) and W I (b) lines by Gauss function (emission intensity obtained from near-anode cross-section) The Gauss function was used to approximate the spatial profiles to obtain the differentiable function in order to transform the observed emission intensity into its local values by the Bockasten method [12]. These local values of emission intensity of selected spectral lines were used to determine plasma temperature by the Boltzmann plot technique [13]. 2. RESULTS AND DISCUSSIONS As mentioned above, both copper and tungsten atomic spectral lines were used in this work. Namely, the spectral profiles of Cu I 510.5, 515.3, 521.8 nm and W I 468.1, 488.7, 498.3, 500.6, 501.5, and 522.5 nm spectral lines were selected from spectra, approximated and used in the determination of plasma temperature. Typical Boltzmann plots on the basis of the aforementioned spectral lines are shown in Fig. 5. The spectroscopic data for each of these lines were preliminarily selected in previous works [14, 15]. One can see, that approximating straight lines coincide almost exactly with the calculated points on the Boltzmann plot based on Cu I spectral lines, which indicates that temperature is determined with high accuracy (< 10 %). The accuracy of temperature determination by plots on the basis of W I spectral lines has a more significant error (< 20 %). Such error is due to the narrow range of energy of upper levels of the selected tungsten spectral lines (0.82 eV compared with 2.38 eV of copper). It is obvious, that the narrower the energy range, the greater the error in determining the temperature for the same errors in determining the value ln(Iλ 3 /gf). The radial distributions of plasma temperature determined by the Boltzmann plot technique based on both Cu I and W I obtained from near-anode, middle and near-cathode cross-sections of the arc discharge channel are shown in Fig. 6. One can see, that temperatures obtained in different cross-sections differ along the discharge gap, especially at the axial points (r = 0 mm) of the discharge channel. This can be explained by a significant difference in metal components concentrations at different points of the arc. Naturally, the lower temperature can indicate the higher content of metal evaporated from electrode’s surface. Thus, it can be assumed, the material of the composite electrode evaporates more strongly in the near-cathode region compared to the near-anode one. a b Fig. 5. Typical Boltzmann plots based on emission intensity of Cu I 510.5, 515.3, 521.8 nm (a) and W I 468.1, 488.7, 498.3, 500.6, 501.5 and 522.5 nm (b) spectral lines (emission intensity obtained from near- anode cross-section) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0E+00 5.0E+07 1.0E+08 1.5E+08 2.0E+08 2.5E+08 Cu I 510.5 nm Cu I 515.3 nm Cu I 521.8 nm Gauss Fit of Cu I 510.5 nm Gauss Fit of Cu I 515.3 nm Gauss Fit of Cu I 521.8 nm C u I 5 1 0 .5 n m r, mm I, a.u. 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1E+07 2E+07 3E+07 4E+07 5E+07 6E+07 I, a.u. W I 488.7 nm W I 500.6 nm W I 501.5 nm Gauss Fit of W I 488.7 nm Gauss Fit of W I 500.6 nm Gauss Fit of W I 501.5 nm W I 4 6 8 .1 n m r, mm Model Gauss Equation y=y0 + (A/(w*sqrt(pi/2)))*exp(-2*((x-x c)/w)^2) Plot W I 500.6 nm y0 -5.25758E8 ± 6.77609E9 xc -0.31557 ± 0.57544 w 8.70979 ± 55.04359 A 6.32489E9 ± 1.13984E11 Reduced Chi-Sqr 2.35394E12 R-Square (COD) 0.99025 Adj. R-Square 0.98538 Model Gauss Equation y=y0 + (A/(w*sqrt(pi/2)))*exp(-2*((x-x c)/w)^2) Plot W I 501.5 nm y0 -1.91863E7 ± 4.62669E7 xc -0.20923 ± 0.3196 w 2.60552 ± 1.69404 A 2.15912E8 ± 2.9863E8 Reduced Chi-Sqr 1.62819E12 R-Square (COD) 0.99104 Adj. R-Square 0.98657 Model Gauss Equation y=y0 + (A/(w*sqrt(pi/2)))*exp(-2*((x-x c)/w)^2) Plot W I 522.5 y0 -9.61114E6 ± 4.76848E7 xc 0.06288 ± 0.21626 w 1.87788 ± 1.34401 A 1.43863E8 ± 2.15278E8 Reduced Chi-Sqr 1.0326E13 R-Square (COD) 0.96002 Adj. R-Square 0.94003 Model Gauss Equation y=y0 + (A/(w*sqrt(pi/2)))*exp(-2*((x-x c)/w)^2) Plot W I 551.45 nm y0 -5.31692E8 ± 4.15222E10 xc -1.9422 ± 23.2363 w 14.79692 ± 608.03508 A 1.12027E10 ± 1.2348E12 Reduced Chi-Sqr 9.61002E12 R-Square (COD) 0.9554 Adj. R-Square 0.93309 3.5 4.0 4.5 5.0 5.5 6.0 6.5 42 44 46 48 510.5 515.3 521.8 ln(Il3/gf) r = 0 mm r = 0.58 mm r = 1.3 mm r = 0 m m E, eV 2.4 2.6 2.8 3.0 3.2 3.4 38.0 38.5 39.0 39.5 40.0 40.5 41.0 468.1 488.7 498.3 500.6 501.5 522.5 r = 0 mm r = 0.58 mm r = 1.3 mm r = 0 m m E, eV Equation y = a + b*x Plot r = 0 mm Weight No Weighting Intercept 43.19273 ± 0.9659 Slope -1.17519 ± 0.31469 Residual Sum of Squares 0.18527 Pearson's r -0.88154 R-Square (COD) 0.77711 Adj. R-Square 0.72139 Equation y = a + b*x Plot r = 0.14 mm Weight No Weighting Intercept 43.59393 ± 0.72885 Slope -1.35349 ± 0.23746 Residual Sum of Squares 0.10549 Pearson's r -0.9436 R-Square (COD) 0.89038 Adj. R-Square 0.86297 Equation y = a + b*x Plot r = 1.15 mm Weight No Weighting Intercept 44.99216 ± 0.87764 Slope -2.03631 ± 0.28593 Residual Sum of Squares 0.15296 Pearson's r -0.96276 R-Square (COD) 0.9269 Adj. R-Square 0.90862 ln(Il3/gf) ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142) 137 a b c Fig. 6. Radial distributions of plasma temperature, obtained by Boltzmann plot technique based on Cu I and W I spectral lines registered from near-anode (a), middle (b) and near-cathode (c) cross-sections of arc discharge channel Moreover, the radial distribution of temperatures obtained on the basis of emission intensity of both atomic copper and tungsten spectral lines coincides within the range of measurements error at most radial points of discharge channel. This allows us to draw the conclusion that the local thermodynamic equilibrium is realized in all three investigated cross-sections of the discharge gap between the copper-tungsten composite electrodes. CONCLUSIONS The novel Cu-W composite material fabricated by shock pressing technology at the temperature of 750 °C was studied in interaction with 3.5 A DC current arc discharge plasma. Spectra of such plasma emission were registered and treated to determine the radial distributions of plasma temperature in three different cross-sections of the plasma channel, namely in near- cathode, near-anode and middle cross-sections. It was found, that the radial distribution of temperatures obtained on the basis of emission intensity of both atomic copper and tungsten spectral lines coincides within the range of measurements error at most radial points of the discharge channel. This indicates that local thermodynamic equilibrium can realize in all three investigated cross-sections of the discharge gap between the copper-tungsten composite electrodes. The results obtained in this work allow us to carry out further investigations of the thermal plasma of electric arc discharge between other types of novel Cu- W composite electrodes, namely fabricated at variable manufacturing parameters. Moreover, the erosion resistance of all of these types of composite electrodes should be estimated by determination of the content of metal vapours in discharge gap. ACKNOWLEDGEMENTS This work has been partially carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement № 101052200 ‒ EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them. This work has been supported in part by the bilateral Czech Republic – Ukrainian collaboration project № M/42-2022 of Ministry of Education and Science of Ukraine. In addition, the authors are grateful to Dr. Oleksandr Tolochyn from the Frantsevich Institute for Problems of Materials Science NAS of Ukraine for the materials provided under the cooperation agreement. REFERENCES 1. M. Mohammadijoo, S. Kenny, L. Collins, et al. Influence of cold-wire tandem submerged arc welding parameters on weld geometry and microhardness of microalloyed pipeline steels // Int. J. Adv. Manuf. Technol. 2017, v. 88, p. 2249-2263, https://doi.org/10.1007/s00170-016-8910-z. 2. B. Acherjee. Hybrid laser arc welding: State-of-art review // Optics and Laser Technology. 2018, v. 99, p. 60-71, https://doi.org/10.1016/j.optlastec.2017.09.038. 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 4000 5000 6000 7000 8000 9000 10000 11000 12000 TCu, K TW, K r, mm T, K 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 4000 5000 6000 7000 T, K TCu, K TW, K r, mm 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 4000 5000 6000 7000 8000 9000 T, K TCu, K TW, K r, mm https://doi.org/10.1007/s00170-016-8910-z https://doi.org/10.1016/j.optlastec.2017.09.038 138 ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142) 3. V. Shchitsyn, D. Belinin, Yu. Shchitsyn. Plasma Welding of Aluminum Alloys with the Use of Two Direct ARCS on Reverse-Polarity Current // Metallurgist. 2016, v. 59, p. 1234-1237, https://doi.org/10.1007/s11015-016-0243-5. 4. L. Wang, C. Zhang, C. Wu. Experimental study on controlled pulse keyholing plasma arc welding assisted by ultrasonic vibration // Int. J. Adv. Manuf. Technol. 2020, v. 107, p. 4995-5009, https://doi.org/10.1007/s00170-020-05384-w. 5. P. Fauchais, G. Montavon, R. Lima, B. Marple. Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review // Journal of Physics D: Applied Physics. 2011, v. 44(9), p. 093001, https://doi.org/10.1088/0022-3727/44/9/093001. 6. S. Ries, N. Bibinov, M. Rudolph, J. Schulze, S. Mráz. Spatially resolved characterization of a dc magnetron plasma using optical emission spectroscopy // Plasma Sources Science and Technology. 2018, v. 27(9), p. 094001, https://doi.org/10.1088/1361-6595/aad6d9. 7. N. Sirotkin, A. Khlyustova, V. Titov, A. Agafonov. Plasma assisted synthesis and deposition of molybdenum oxide nanoparticles on polyethylene terephthalate for photocatalytic degradation of rhodamine B // Plasma Processes and Polymers. 2020, v. 17(9), p. 2000012, https://doi.org/10.1002/ppap.202000012. 8. V. Tsakiris, M. Lungu, E. Enescu, D. Pavelescua, G. Dumitrescu, A. Radulian, V. Braic. W-Cu composite materials for electrical contacts used in vacuum contactors // Journal of Optoelectronics and Advanced Materials. 2013, v. 15(9, 10), p.1090-1094. 9. H. Hashempour, H. Razavizadeh, Rezaie. Investi- gation on Wear Mechanism of Thermochemically Fabricated W-Cu Composites, Wear. 2010, v. 269, p. 405-415. 10. A.N. Veklich, M.M. Kleshich, V.V. Vashchenko, I.O. Kuzminska. Spectroscopy Peculiarities of Thermal Plasma with Copper and Nickel Vapours // Problems of Atomic Science and Technology. Series “Plasma Electrons and New Methods of Accelerations” (98). 2015, № 4, p. 215-219. 11. A.M. Zhabina. Coloured optical glass: GOST 9411- 75. Moscow: “Publishing house of standards”, 1980, 50 p. 12. K. Bockasten. Transformation of Observed Radiances into Radial Distribution of the Emission of a Plasma // Journal of the Optical Society of America. 1960, № 9(51), p. 943-947. 13. V.V. Ninyovskij, A.M. Veklich, V.F. Boretskij, A.A. Murmantsev. Plasma spectroscopy of electric spark discharge between silver granules immersed in water // 18th International Conference of Young Scientists on Energy and Natural Sciences Issues, 2022, May 24-27, Kaunas, Lithuania, p. 332-335. 14. I.L. Babich, V.F. Boretskij, A.N. Veklich, R.V. Semenyshyn. Spectroscopic data and Stark Broadening of Cu I and Ag I spectral lines: selection and analysis // Advances in Space Research. 2014, v. 54, p. 1254-1263, http://dx.doi.org/10.1016/j.asr.2013.10.034. 15. A.N. Veklich, A.V. Lebid, T.A. Tmenova. Spectroscopic Data of W I, Mo I and Cr I Spectral Lines: Selection and Analysis // J. Astrophys. Astr. 2015, v. 36, p. 589-604, https://doi.org/0. 10.1007/s12036-015-9342-0. Article received 06.10.2022 ОСОБЛИВОСТІ ВЗАЄМОДІЇ КОМПОЗИТНИХ МАТЕРІАЛІВ Cu-W З ТЕРМІЧНОЮ ПЛАЗМОЮ ДУГОВОГО РОЗРЯДУ О. Мурманцев, А. Веклич, В. Борецький, М. Клешич, С. Фесенко, М. Бартлова Описано частину комплексного дослідження взаємодії Cu-W композитних матеріалів з термічною плазмою електродугового розряду. На цьому етапі роботи досліджувалась плазма дугового розряду постійного струму 3,5 А між новітніми композитними матеріалами Cu-W, які виготовлені за технологією ударного пресування при температурі 750°C. Зареєстровано та оброблено спектри випромінювання такої плазми з метою визначення радіального розподілу температури в трьох різних поперечних перерізах плазмового каналу, а саме в прикатодному, прианодному та середньому перерізах. https://doi.org/10.1007/s11015-016-0243-5 https://doi.org/10.1007/s00170-020-05384-w https://doi.org/10.1088/0022-3727/44/9/093001 https://doi.org/10.1088/1361-6595/aad6d9 https://doi.org/10.1002/ppap.202000012 http://dx.doi.org/10.1016/j.asr.2013.10.034 file:///C:/Users/vmakh/Downloads/10.1007/s12036-015-9342-0