Асимптотична поведінка індексу складності зростаючих випадкових дерев
Запропоновано означення індексу складності зростаючого випадкового ациклічного графа. Цю величину можна розглядати як модифікацію індексу Вінера, який було введено в якості міри компактності молекули і який визначається як сума відстаней між усіма парами вершин графа. Так само як і індекс Вінера, за...
Gespeichert in:
| Datum: | 2024 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Видавничий дім "Академперіодика" НАН України
2024
|
| Schriftenreihe: | Доповіді НАН України |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/202320 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Асимптотична поведінка індексу складності зростаючих випадкових дерев / А.А. Дороговцев, Д.М. Калитюк, І.І. Ніщенко // Доповіді Національної академії наук України. — 2024. — № 3. — С. 3-10. — Бібліогр.: 11 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Запропоновано означення індексу складності зростаючого випадкового ациклічного графа. Цю величину можна розглядати як модифікацію індексу Вінера, який було введено в якості міри компактності молекули і який визначається як сума відстаней між усіма парами вершин графа. Так само як і індекс Вінера, запропонований у статті індекс складності характеризує форму графа, його розгалуженість, але, на відміну від індексу Вінера, його можна обчислити не лише для зв’язного графа, але й для випадкового лісу. Завдяки мультиплікативній властивості, яку має запропонована характеристика, вдалося оцінити знизу математичне сподівання індексу складності випадкового дерева, що отримується в результаті коалесценції випадкового лісу. Встановлено також асимптотичну поведінку не тільки математичного сподівання індексу складності, але й самого індексу складності рекурсивного рівномірного випадкового дерева. Запропонований підхід може бути використаний для обчислення складності широкого класу графів з марковською динамікою зростання. |
|---|