Оценивание состояния посевных площадей на основе классификации агрофитоценозов по данным спутниковых наблюдений

Розглянуто проблему класифікації агрофітоценозів за даними супутникового спостереження. Запропоновано процедуру попередньої обробки супутникових зображень для підвищення точності та швидкості експрес-аналізу стану сільськогосподарських угідь. Основна ідея алгоритму полягає в побудові моделей класифі...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Подгородецкая, Л.В., Пруцко, Ю.В., Семенив, О.В.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2016
Назва видання:Проблемы управления и информатики
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/208180
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Оценивание состояния посевных площадей на основе классификации агрофитоценозов по данным спутниковых наблюдений / Л.В. Подгородецкая, Ю.В. Пруцко, О.В. Семенив // Проблемы управления и информатики. — 2016. — № 3. — С. 152-159. — Бібліогр.: 16 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Розглянуто проблему класифікації агрофітоценозів за даними супутникового спостереження. Запропоновано процедуру попередньої обробки супутникових зображень для підвищення точності та швидкості експрес-аналізу стану сільськогосподарських угідь. Основна ідея алгоритму полягає в побудові моделей класифікації знімків агрофітоценозів на основі використання методу статистичного навчання. Наведено результати тестування алгоритму, проведено комп'ютерне моделювання оптимальних параметрів моделі для забезпечення високої точності та узагальнюючого статистичного показника. Попередні результати класифікації супутникових знімків сільськогосподарських угідь продемонстрували, що застосування вищезгаданого методу дозволяє значно спростити процес експрес-аналізу стану агрофітоценозів, оперативно та достовірно визначати площі посівних, підвищити швидкість обробки знімків, при цьому зберігається висока точність класифікації (понад 70 %) і коефіцієнт регулярності при різних вхідних даних.