Чебишовське наближення сумою многочлена й нелінійного виразу з ермітовим інтерполюванням у крайніх точках відрізка

Встановлено достатнi умови iснування чебишовського (рiвномiрного, мiнiмаксного) наближення функцiї сумою полiному й нелiнiйного виразу з найменшою абсолютною похибкою й iнтерполюванням функцiї та її похiдної в крайнiх точках вiдрiзка. Подано приклади функцiй, для яких таке наближення iснує. Описано...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Скопецький, В.В., Малачівський, П.С.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Видавничий дім "Академперіодика" НАН України 2010
Назва видання:Доповіді НАН України
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/29541
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Чебишовське наближення сумою многочлена й нелінійного виразу з ермітовим інтерполюванням у крайніх точках відрізка / В.В. Скопецький, П.С. Малачiвський // Доп. НАН України. — 2010. — № 4. — С. 42-47. — Бібліогр.: 8 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine