Estimation of the rate of convergence to the limit distribution of the number of false solutions of a system of nonlinear random Boolean equations that has a linear part
The theorem on a estimation of the rate of convergence (n →∞) to the Poisson distribution of the number of false solutions of a beforehand consistent system of nonlinear random equations, that has a linear part, over the field GF(2) is proved.
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/4484 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Estimation of the rate of convergence to the limit distribution of the number of false solutions of a system of nonlinear random Boolean equations that has a linear part / V. Masol, M. Slobodian // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 132-143. — Бібліогр.: 3 назв.— англ. |