On differentiability of solution to stochastic differential equation with fractional Brownian motion
Stochastic differential equation with pathwise integral with respect to fractional Brownian motion is considered. For solution of such equation, under different conditions, the Malliavin differentiability is proved. Under infinite differentiability and boundedness of derivatives of the cofficients i...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/4493 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On differentiability of solution to stochastic differential equation with fractional Brownian motion / Yu.S. Mishura, G.M. Shevchenko // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 243-250. — Бібліогр.: 10 назв.— англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Stochastic differential equation with pathwise integral with respect to fractional Brownian motion is considered. For solution of such equation, under different conditions, the Malliavin differentiability is proved. Under infinite differentiability and boundedness of derivatives of the cofficients it is proved that the solution is infinitely differentiable in the Malliavin sense with all derivatives bounded. |
---|