Аппроксимация решения задачи Коши для параболического уравнения с нелинейным потенциалом
Рассмотрена задача Коши для квазилинейного параболического уравнения с локальным и нелокальным потенциалом. Для уравнения типа «реакция-диффузия» с выпуклым локальным потенциалом построены барьерные функции, являющиеся верхней и нижней оценками решения задачи Коши. Метод построения упомянутых барьер...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
2012
|
Назва видання: | Системні дослідження та інформаційні технології |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/50200 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Аппроксимация решения задачи Коши для параболического уравнения с нелинейным потенциалом / В.Г. Бондаренко, А.Н. Селин // Систем. дослідж. та інформ. технології. — 2012. — № 4. — С. 111-118. — Бібліогр.: 7 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Рассмотрена задача Коши для квазилинейного параболического уравнения с локальным и нелокальным потенциалом. Для уравнения типа «реакция-диффузия» с выпуклым локальным потенциалом построены барьерные функции, являющиеся верхней и нижней оценками решения задачи Коши. Метод построения упомянутых барьерных функция — композиция решений двух дифференциальных уравнений. Для уравнения с нелокальным логистическим потенциалом свойства построенной аналогичным образом барьерной функции, как верхней оценки, проверены с помощью вычислительного эксперимента. |
---|