Learning Maximal Margin Markov Networks via Tractable Convex Optimization

Показано, что обучение марковской сети общего вида может быть представлено в виде задачи выпуклой оптимизации. Основная идея метода заключается в использовании LP-релаксации (max,+)-задачи непосредственно при формулировании задачи обучения....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Franc, V., Laskov, P.
Формат: Стаття
Мова:English
Опубліковано: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України 2011
Назва видання:Управляющие системы и машины
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/82921
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Learning Maximal Margin Markov Networks via Tractable Convex Optimization / V. Franc, P. Laskov // Управляющие системы и машины. — 2011. — № 2. — С. 25-34. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-82921
record_format dspace
spelling irk-123456789-829212015-06-12T03:02:14Z Learning Maximal Margin Markov Networks via Tractable Convex Optimization Franc, V. Laskov, P. Оптимизационные задачи структурного распознавания образов Показано, что обучение марковской сети общего вида может быть представлено в виде задачи выпуклой оптимизации. Основная идея метода заключается в использовании LP-релаксации (max,+)-задачи непосредственно при формулировании задачи обучения. It is shown that the learning of a general Markov network can be represented as a convex optimization problem. The key idea of the method is to use a linear programming relaxation of the (max,+)-problem directly in the formulation of the learning problem. Показано, що навчання марківської мережі загального вигляду може бути подано у вигляді задачі опуклої оптимізації. Основна ідея методу полягає у використанні LP-релаксації (max,+)-задачі безпосередньо при формулюванні задачі навчання. 2011 Article Learning Maximal Margin Markov Networks via Tractable Convex Optimization / V. Franc, P. Laskov // Управляющие системы и машины. — 2011. — № 2. — С. 25-34. — Бібліогр.: 17 назв. — англ. 0130-5395 http://dspace.nbuv.gov.ua/handle/123456789/82921 004.93’1:519.157 en Управляющие системы и машины Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Оптимизационные задачи структурного распознавания образов
Оптимизационные задачи структурного распознавания образов
spellingShingle Оптимизационные задачи структурного распознавания образов
Оптимизационные задачи структурного распознавания образов
Franc, V.
Laskov, P.
Learning Maximal Margin Markov Networks via Tractable Convex Optimization
Управляющие системы и машины
description Показано, что обучение марковской сети общего вида может быть представлено в виде задачи выпуклой оптимизации. Основная идея метода заключается в использовании LP-релаксации (max,+)-задачи непосредственно при формулировании задачи обучения.
format Article
author Franc, V.
Laskov, P.
author_facet Franc, V.
Laskov, P.
author_sort Franc, V.
title Learning Maximal Margin Markov Networks via Tractable Convex Optimization
title_short Learning Maximal Margin Markov Networks via Tractable Convex Optimization
title_full Learning Maximal Margin Markov Networks via Tractable Convex Optimization
title_fullStr Learning Maximal Margin Markov Networks via Tractable Convex Optimization
title_full_unstemmed Learning Maximal Margin Markov Networks via Tractable Convex Optimization
title_sort learning maximal margin markov networks via tractable convex optimization
publisher Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
publishDate 2011
topic_facet Оптимизационные задачи структурного распознавания образов
url http://dspace.nbuv.gov.ua/handle/123456789/82921
citation_txt Learning Maximal Margin Markov Networks via Tractable Convex Optimization / V. Franc, P. Laskov // Управляющие системы и машины. — 2011. — № 2. — С. 25-34. — Бібліогр.: 17 назв. — англ.
series Управляющие системы и машины
work_keys_str_mv AT francv learningmaximalmarginmarkovnetworksviatractableconvexoptimization
AT laskovp learningmaximalmarginmarkovnetworksviatractableconvexoptimization
first_indexed 2025-07-06T09:35:28Z
last_indexed 2025-07-06T09:35:28Z
_version_ 1836889700202184704
fulltext УСиМ, 2011, № 2 25 UDC 004.93’1:519.157 V. Franc, P. Laskov Learning Maximal Margin Markov Networks via Tractable Convex Optimization Показано, что обучение марковской сети общего вида может быть представлено в виде задачи выпуклой оптимизации. Основная идея метода заключается в использовании LP-релаксации (max,+)-задачи непосредственно при формулировании задачи обучения. It is shown that the learning of a general Markov network can be represented as a convex optimization problem. The key idea of the method is to use a linear programming relaxation of the (max,+)-problem directly in the formulation of the learning problem. Показано, що навчання марківської мережі загального вигляду може бути подано у вигляді задачі опуклої оптимізації. Основ- на ідея методу полягає у використанні LP-релаксації (max,+)-задачі безпосередньо при формулюванні задачі навчання. Abstract The learning of Markov networks constitutes a challenging optimization problem. Even the pre- dictive step of a general Markov network involves solving an NP-complete max-sum problem. By using the discriminative approach, learning of the Markov networks from noisy examples can be transformed to a convex quadratic program with intractably large number of linear constraints. The intractable quadratic problem can be attacked by an approximate cutting plane (ACP) algorithm proposed in [5]. The ACP requires repeatedly solving a predictive step for finding the most vio- lated constraint. The intractable search for the most violated constraint is approximated by using an (approximate) solver for the max-sum problem. The use of the approximative max-sum solver in- side the ACP algorithm brings two important problems. First, the ACP algorithm is not guaran- teed to converge to the optimal solution. Second, the max-sum solvers are time consuming algo- rithms which forbids using the ACP algorithm to large scale problems. In this paper, we show that learning of a general Markov network can be ex- pressed as a convex optimization problem which is solvable efficiently without calling any external max-sum solver. The key idea, generalizing work of [12], is to use a linear programing relaxation of the max-sum problem directly in the formulation of the learning problem. We show that the pro- posed learning problem can be solved efficiently by the Generalized Proximal Point Algorithm [7]. The empirical evaluation shows that our algorithm speeds up learning of general Markov networks by a factor of up to 20 compared to the ACP algo- rithm. 1. Introduction A Markov network is a powerful representation of dependencies in structured objects. A Markov network is defined by an undirected graph consist- ing of nodes  and edges       2   . The nodes cor- respond to elementary objects while the edges rep- resent possible structural interactions between them. Each object t is characterized by an observ- able variable tx which takes value from a set  and a hidden variable ty which takes values from a finite set  . Dependencies between observed an a hidden variables are modeled for each object t by functions );,( ttt yxq . Dependencies between hidden variables of pairs of objects are modeled for each pair tt , by functions );,(  tttt yyg . In or- der to apply a Markov network in practice the de- pendency functions );,( ttt yxq and );,(  tttt yyg have to be specified. In principle, this can be done by hand, but typically one assumes a certain pa- rametrization n which controls the functi- onal form of dependency functions tq and ttg  . The parameter  is then learned from examples of observations and corresponding hidden variables. The Markov networks are typically used for pre- diction of the hidden variables )|(=   tyy t gi- ven a tuple of observable variables )|(=   txx t . The predictive step amounts to solving ,);,();,(argmax =);,(argmax=);(             tttt tt ttt ty y yygyxq yxHxh   (1) 26 УСиМ, 2011, № 2 where   :h denotes the classifier (pre- diction rule) given by the scoring function   :H which measures a match be- tween the observations x and the hidden vari- ables y . The integer programming problem on the right-hand side of (1) is called a max-sum prob- lem. We will denote the classification rule (1) as the max-sum classifier. The max-sum problem is NP-complete in general but it can be made tracta- ble by imposing additional constraints on the graph ),(  or the quality functions ttg  . The im- portant examples of polynomially solvable max- sum problems involve the problems with acyclic graphs, graphs with a low tree-width (also called simple nets), and the problems with supermodular functions ttg  . For a survey of relevant results we refer to [9, 17]. A probabilistic interpretation of a Markov net- work can be derived by assuming the observations x and the hidden variables y to be realizations of random variables )|(= tXX t and )|(= tYY t distributed according to the Gibbs distribution );,(exp )( 1 =);,(    yxH Z yxP where )(Z is the partition function. The Maximum A Posteriori Prediction (MAP) of the hidden variables y given observations x is carried out by evaluating )|(argmax=* xyPy y  which coincides with the classifier (1). The parametrization by  offers two general approaches for learning Markov networks from a training set mmm yxyx )()},(,),,{( 11    . A generative approach is based on the estimation of parameters  using a Maximum-Likelihood (ML) principle. Such estimation is well known for Hidden Markov Models with acyclic graphs (see e.g. [11]). In a general case, however, the ML es- timation is not tractable for Markov networks be- cause no polynomial time algorithm is known for computing the partition function Z(). A discrimi- native approach is an alternative method which is based on direct optimization of parameters  in order to minimize the prediction error of classifier (1) computed on the training set. The discrimina- tive learning inherently requires solving the in- tractable predictive step of the max-sum classifier. For this reasons most of the existing methods re- strict the class of learned max-sum classifiers in order to make the problem tractable. The restric- tion is imposed either on the neighborhood graph ),(  or on the quality functions ttg  . In the next paragraph we shortly review existing methods. The methods for learning max-sum classifiers with acyclic graph ),(  are well understood [11, 3, 1, 2, 14]. Learning of the Associative Markov Networks (AMN) with an arbitrary graph structu- re was proposed by [13]. The AMN is the Markov network with the quality functions ttg  restricted in a way similar to the Potts model. Even though the predictive step of the AMN is not tractable, the learning algorithm in [13] alleviates the prob- lem by using a kind of Linear Programming (LP) relaxation. By this manner, the learning problem is transformed into a Quadratic Programming (QP) task with a polynomial number of constraints. Le- arning of the max-sum classifiers with super-modu- lar quality functions ttg  was proposed in [5]. In this case, the learning leads to a QP task solvable in polynomial time by the Cutting Plane Algorithm (CPA). Another polynomially learnable class is formed by the max-sum classifier with a strictly trivial equivalent (STE) [5]. The max-sum prob- lems with STE are those whose response can be computed exactly via LP relaxation. Provided the training examples are separable, learning of the max-sum classifier with STE can be transformed to solving a system of strict linear inequalities manageable by the Perceptron algorithm. In the case of non-separable examples, the max-sum classifier with STE can be learned by minimizing a regularized upper bound on the empirical risk with zero-one loss function. The only existing ap- proach for learning truly general max-sum classi- fiers was proposed in [5]. The intractable learning problem is attacked by an Approximate Cutting Plane (ACP) algorithm. The ACP requires repeat- edly solving a predictive step for finding the most violated constraint. The intractable search for the most violated constraint is approximated by using an (approximate) solver for the max-sum problem. УСиМ, 2011, № 2 27 The use of the approximative max-sum solver in- side the ACP algorithm brings two important problems. First, the ACP algorithm is not guaran- teed to converge to the optimal solution. Second, the max-sum solvers are time consuming algo- rithms which forbids the use of the ACP algorithm to large scale problems. In this paper, we concentrate on learning of the max-sum classifier with a general neighborhood graph ),(  and general quality functions ttg  . We show that the learning of a general max-sum classifier from non-separable examples can be ex- pressed as a convex optimization problem solv- able efficiently without calling any external max- sum solver. Our approach, named LP-M3N formu- lation, generalizes the Maximum Margin Markov Network (M3N) algorithm for learning of the As- sociative Markov Networks (AMN) [13]. We show that the LP-M3N problem can be solved efficiently by the Generalized Proximal Point Algorithm. We show experimentally that our algorithm speeds up the learning by a factor of up to 20 compared to the ACP algorithm. The paper is organized as follows. Section 2 describes the LP relaxation of the max-sum prob- lems which is essential for our approach. The ex- isting M 3 N methods for learning max-sum classi- fiers are outlined in Section 3. Our LP-M3N for- mulation is described in Section 4. The General- ized Proximal Point Algorithm for optimization of the LP-M3N problem is given in Section 5. Sec- tion 6 presents an empirical evaluation and Sec- tion 7 concludes the paper. 2. Linear Programming Relaxation Computing the output of a classifier (1) re- quires solving the max-sum problem which is NP- complete in general. An approximate solution can be found by the linear programming (LP) relaxa- tion proposed by [8] and later reinvented by [6, 16]. We introduce only the basic concepts of the LP relaxation necessary for this article. For more information we refer to a survey in [17]. Let ),(   denote an undirected graph with edges },,|)},(),,{{(=   yyttytyt . Each node  ),( yt and each edge  )},(),,{( ytyt is assigned a number )(yt and ),( yytt   , respectively. Let 2||||||||    be an ordered tuple which contains elements )(yt ,  ),( yt and ),( yytt   ,  )},(),,{( ytyt . The LP relaxation of (1) reads .,,0)(,,1)( ,,,)(),( )];,(),( );,()([argmax 2),( *                     ytyty yttyyy tosubject yygyy xyqy tt y ttt y tttt yytt ttt yt (2) We denote the objective of (2) by );,( xP . It can be seen that solving (2) with an additional constraint 2||||||||{0,1}   is an integer linear programming (ILP) problem equivalent to (1). It implies that );,(max);,( *   yxHxP y  holds in general. Further, we introduce the Lagrange dual of the LP task (2) which will be later used to con- struct the learning algorithms. Let   :tt and   :tt be a pair of functions introduced for each pair of neighbouring objects tt , that is, we have ||2  functions in total. We will use ||||2  to denote an ordered tuple which con- tains elements )(ytt  , },{ tt , y and )(ytt   , },{ tt , y . Let further }},{|{=)(   ttttN denote the set of objects neighbouring with the object t . Let us define a convex function .)]()(),([max )]();,([max);,( 2},{ )( tttttttttt yytt t tNt tt yt yyyyg yyxqxD          (3) It can be shown that the dual of the LP relaxa- tion (2) is equivalent to * ( , ; ).argmin D x      (4) By the weak duality theorem, ( , ; )D x    *( , ; )P x   ,  , and thus also ( , ; )D x      ,);,(max yxHy  . It means that );,( xD 28 УСиМ, 2011, № 2 provides an upper bound on the optimal value of the max-sum problem which will be later used to construct the learning algorithms. The problem (4) can be interpreted as searching for the best (that is, minimal) upper bound. Provided the LP relaxation is tight, one can compute the maximizer y = arg );,(max  yxHy  from * by solving an instance of the Constraint Satisfaction Problem (CSP). The CSP is a special case of the max-sum problem when the quality functions tq , ttg  attain values ,0}{ . The CSP itself is NP-complete in general. There is no guar- antee that we can compute *y even if =);,( * xD );,(= * yxH holds and thus computing the opti- mal solution *y is a more complex than comput- ing the value );,( * yxH which can be always ap- proximated by );,( * xD solvable in a polyno- mial time. The LP tasks (2) and (4) are not the only possi- ble way to approximate the max-sum problem (1). If the graph ),(  can be easily decomposed to acyclic sub-graphs with non-overlapping edges, the task (4) can be replaced by an equivalent prob- lem potentially more suitable for optimization [10]. Let us consider a grid graph ),(  useful in image analysis, that is, ,1,=|),{(= iji Height, }Width,1,= j and  ),(|)},(),,{{(= jijiji 1}|=|||,),(, jjiiji   . We define the sets of horizontal H and vertical V edges as follows ,}Width<,1Height1|)},(1),,{{(=  jijijiH .}Width,1Height<1|)},(),1,{{(=  jijijiV It can be seen that VH  = and }{=  VH  . Let   :t be functions de- fined for each object  and let ||||  denote an ordered tuple which contains elements )(yt , t , y . It is easy to see that               )();,( 2 1 =);,( ttttt t yyxqyxH                                 ),()( );,( 2 1 ),( tttt tt tt ttt t tttt tt yygy yxqyyg V H   (5) holds  . Taking the maximum over the terms in (5) independently we get ,),( )();,( 2 1 max ),()( );,( 2 1 max=);,(                                         tttt Vtt ttttt ty tttt Htt tt ttt ty yyg yyxq yygy yxqxU     (6) which is obviously an upper bound on the optimal value );,(max  yxHy  . The upper bound U(x, , ) can be evaluated efficiently since it involves two max-sum problems with an acyclic neighbor- ing structure solvable by the dynamic program- ming. It can be proved [10] that the upper bounds );,( xD and );,( xU are equivalent in the sence that .);,(min=);,(min   xUxD Minimizing the bound );,( xU involves smal- ler number of variables compared to the bound );,( xD and thus is preferable for large scale problems. 3. Maximal Margin Markov Networks In this section, we describe a discriminative approach for learning the quality functions tq , ttg  . We consider learning from a single example   )ˆ,ˆ( yx . This assumption considerably simplifies notation but all the introduced algo- rithms can be easily extended for a finite number of examples. Let   :L be a loss function pe- nalizing a prediction );( xh by a penalty L(y, h(x; )) provided the true hidden variables are y. УСиМ, 2011, № 2 29 We assume that L is additive over the objects t , that is, ),(=),( tttt yyLyyL    , where :tL , t . In addition, we assume that 0=),( yyLt  for yy = and 0>),( yyLt  oth- erwise. An example of a proper loss function is the Hamming distance ]][[=),( ttt yyyyL     where 1=]][[ A if A is valid and 0=]][[ A other- wise. Further, we assume that the functions );,( yxqt and );,(  yyg tt are linear in the pa- rameter n , that is, ,),,(=),( ),,(=);,(    yyyyg andyxyxq tttt tt (7) where n t  : and n tt   : are arbitrary fixed mappings. Under the assumption (7), the max-sum classifier (1) becomes an in- stance of the linear multiclass classifier     ),(),(,argmax=);( tttt tt ttt ty yyyxxh  ,),(,argmax =)(),(,argmax=     yx yyx y gq y   where nq   : , ng  : and n  : are mappings constructed from t and tt  . Given an example )ˆ,ˆ( yx , the parameter vector  can be learned by minimizing the following con- vex problem 2* 1 = ( ) := ( ) ,argmin 2n F C R           (8) where ˆ ˆ( ) = [ ( , ) , ( , ) ]max ˆ ˆ, ( , ) , y Y R L y y x y x y           (9) and 0>C is some prescribed constant. The max- sum classifier with parameters obtained by solv- ing (8) is called the Maximum Margin Markov Network (M3N) [14]. In the sequel, we will denote (8) as the M3N problem. The objective function )(F of the M3N prob- lem is composed of the quadratic regularization term 21 2  and the function )(R which is a convex approximation of the empirical risk, that is, ));(,()(  xhyLR ,  . The quadratic term 21 2  and the regularization constant 0>C re- gularizes the solution in order to prevent the clas- sifier from over-fitting. The constant C is typi- cally tuned on a validation set. It can be shown that the quadratic term in the objective is equiva- lent to restricting the admissible parameters  into a ball with a radius proportional to the con- stant C . In addition, for sufficiently large C the problem (8) becomes equivalent to solving * = ( )argmin R  . Though the M3N problem is convex it is not tractable due to the function )(R whose evalua- tion involves solving an instance of the max-sum problem which is NP-complete. The complexity of the M3N problem becomes more apparent if it is transformed into an equivalent quadratic pro- gramming (QP) problem with |||  linear con- strains and 1n variables. We now summarize the existing methods for solving (8). We consider only the methods that can deal with an arbitrary neighborhood graph ),(  .  Associative Markov Networks (AMNs) [13]. AMNs is the Markov Network with the quality functions satisfying 0=),( yyg tt  , for yy  . [13] proposed to replace the intractable function )(R in the definition of (8) by its LP relaxation which is particularly simple for the AMNs. In that man- ner the intractable M3N problem (8) is approxi- mated by a tractable QP task with )|||(| 2O linear constrains.  Super-modular max-sum classifiers [5]. Un- der the assumption that the quality functions ttg  are super-modular, the max-sum problem can be solved in polynomial time. In turn, the value of the function )(R and its sub-gradient can be computed which makes it possible to solve the 30 УСиМ, 2011, № 2 M3N problem efficiently by a variant of the cut- ting plane algorithm (CPA). The CPA of [5] finds -optimal solution of (8) in        1 O iterations.  A max-sum classifier with strictly trivial equivalent (STE) [5]. The max-sum problems with STE are those whose response can be computed exactly by the LP relaxation. In the case of sepa- rable training examples, the parameters of the max-sum classifier can be found by solving a set of strict linear inequalities whose number is pro- portional to )|||(| 2O . In turn, the parameters can be found by the Perceptron algorithm which is guaranteed to stop in a finite number of iterations. In the case of non-separable training examples, the parameters can be learned by minimizing a quadratically regularized upper bound on the training error defined for a zero-one loss function (the loss is 0 if all labels are correctly classified otherwise the loss is 1). The learning problem amounts to solving a QP task with )|||(| 2O linear constraints.  General Markov Networks [5]. The M3N pro- blem can attacked by an Approximate Cutting Plane (ACP) algorithm. The APC algorithm re- quires computation of the value of )(R and its sub-gradient which involves solving an instance of an intractable max-sum problem. can be solved approximately by the LP relaxation. The resulting algorithm is guaranteed to stop in a finite number of iterations, however, there are no guarantees on the precision of the found solution. Moreover, the ACP algorithm is computationally demanding as it calls in each iteration the max-sum solver for each training example. Note, that the max-sum solvers are time consuming as they solve a large- scale linear program as well as the CSP problem to obtain the labels. To sum up, there is currently no efficient method for learning parameters of a general max- sum classifier from non-separable examples. To close this gap, we show in Section 4 that the ob- jective function of the M3N problem can be re- placed by another convex function whose value and sub-gradient can be computed efficiently without a need to call an external max-sum solver. In turn, the learning problem can be solved by a plethora of algorithms for non-smooth optimization. We describe one of such algorithm in Section 5. 4. Proposed LP-M3N formulation The key idea is to replace the intractable max- sum problem in the definition of the M3N problem (8) by its upper bound derived from the LP relaxa- tion (c.f. Section 2). Henceforth, we concentrate on the max-sum problem with a grid graph ),(  whose optimal value can be upper bounded by (6). Note, however, that the derivation for a general neighborhood graph using the bound (3) is ana- logical. Using (6) we can upper bound the maximiza- tion term in (9) as follows      ,)(,),ˆ( )(),ˆ( 2 1 ,max)(, ),ˆ()(),ˆ( 2 1 ,max ),()(),ˆ( );,ˆ( 2 1 max),( )(),ˆ();,ˆ( 2 1 max ]),ˆ(,),ˆ([max #                                                   yyyL yyxy yyLyyx yygyyyL yxqyyg yyyLyxq yxyyL gq y gq y tttt Vtt ttttt ttt ty tttt Htt tttttttt ty y        (10) where ||||:   is a mapping constructed appropriately. We define a function  .)ˆ,ˆ(,)(, ),ˆ()(),ˆ( 2 1 ,max )(,),ˆ( )(),ˆ( 2 1 ,max=),(            yxy yyLyyx yyyL yyxR gq y gq y   (11) УСиМ, 2011, № 2 31 Note, that ),( R and )(R are two different functions distinguished by their arguments. By (10) we have that ),()(  RR , ||||  , that is, ),( R is an LP-relaxation based upper bound on )(R . By replacing )(R with ),( R in the definition of M3N problem (8) we obtain | || |θ , 2 ˆ ˆ( , ) = ( , ) :=argmin 1 := ( , ) . 2 yn F C R                 (12) We will denote (12) as the LP-M3N problem. It is seen, that the objective ),( F is convex and it upper bounds the objective of the original M3N problem (8) . An advantage of the LP-M3N prob- lem is that its objective value ),( F and sub- gradient ||||)],();,([=),(    nFFF  can be computed efficiently as follows: ,)(,),ˆ( )(),ˆ( 2 1 ,max=~       yyyL yyxy gq y  ,)(,),ˆ( )(),ˆ( 2 1 ,max='~       yyyL yyxy gq y  1 ˆ( , ) = ( , ) ( ) 2 1 ˆ ˆ ˆ( , ') ( ') ( , ) , 2 q g q g F C x y y x y y x y                  ,)]'~()~([=),( yyCF  21 ( , ) = , ( , ) , ( , ) . 2 F F F               Recall, that the maximization tasks are solvable by the dynamic programming. 5. Generalized Proximal Point Algorithm The objective function ),( F of the LP-M3N problem is convex and non-differentiable. This suggest usage of the methods from non-smooth optimization. The simples options is the plain sub- gradient algorithm which starts from an arbitrary 0( , )0 and then iteratively computes and F F tt tt ttt ),( ),( 1       , ),( ),( 1 tt tt ttt F F       where  ,,0  is a prescribed sequence of posi- tive numbers satisfying  = 0= tt and  tt 0lim = 0. The sub-gradient algorithm is guaranteed to converge to the optimal solution of the LP-M3N problem. In this section, we describe another algorithm for non-smooth optimization which often conver- gences faster compared to the plain sub-gradient algorithm. In particular, we use the Generalized Proximal Point Algorithm (GPPA) [7]. Let us de- fine an auxiliary objective function , 1 ),(:),( 2 t t t FF    (13) where |||| t is a vector and 0>t is a sca- lar. The added quadratic term makes the auxiliary objective ),( tF strictly convex and more ame- nable to minimization compared to the original objective ),( F . There are several methods which can solve the auxiliary problem (13) efficiently. We use the Bundle Method (BM) algorithm described in [15]. The BM algorithm only requires to access the op- timized objective via its value and sub-gradient. The BM algorithm is guaranteed to find -optimal solution in        1 O time. In its inner loop, the BM algorithm solves instances of convex QP of a small size with particularly simple linear con- straints. We used the QP solver described in [4]. It is seen that ),( tF upper bounds ),( F . The approximation gets tighter for larger t and for t closer to the optimal vector ̂ . The Gener- alized Proximal Point Algorithm 1 iteratively tight- ens the approximation by applying block-coordinate minimization on the auxiliary objective ),( tF . 32 УСиМ, 2011, № 2 Algorithm 1: Generalized Proximal Point Algorithm for LP-M 3 N Problem 1. input & initialization: Set 00  , and se- lect a sequence of positive numbers  ,,0  ; 2. repeat; 3. Solve the auxiliary problem ),(argmin=),( ||||, 11    t n tt F  ; (14) 4. until convergence. It is easy to see that the sequence ,),,( 11  ),( tt  generated by Algorithm 1 monotonically decreases the objective function ),( F . Indeed, by a simple algebra we get that . 1 ),(),( 2 111 tt t tttt FF     There exists many convergence results regard- ing the standard PPA. Unfortunately, this is not the case for the GPPA which has not been studied so intensively. The result closest to our problem is the following convergence theorem proved in [7]: Theorem 1 Suppose ],(:  mnF  is a function which is convex and inf-compact, that is, for each  the set }),(|),{(  F is compact. Let ),(,),,( 00    be any sequence generated by Algorithm 1. Then * * , ( , ) = = ( , ).lim mint t t F F where F F        Unfortunately, the theorem cannot be applied to our problem as the objective function ),( F is not inf-compact. Nevertheless, we provide a convincing empirical study of the convergence speed of Algorithm 1 in Section 6. Algorithm 1 is specified up to the choice of the sequence of t and a practical stopping condition. A proper selection of the sequence is delicate as it involves trade-off between the number of itera- tions and the complexity of the auxiliary problem (14). That is, higher values of t leads to a large decrease in the objective value, however, the op- timization of the auxiliary problem (14) gets harder and vice versa. Based on experiments, we found useful to use a geometrical sequence att   =1 , where 1>a and 0>0 are selected constants. In the comparison presented in Section 6 we stop the algorithm when the value of ),( F drops below a given threshold which is known a priory. In practice, when no such threshold is pro- vided, one can stop the algorithm based on ob- serving the objective function. Alternatively, the algorithm can be stopped when the added quad- ratic term in the auxiliary function ),( tF gets sufficiently small meaning that ),( tF is a tight approximation of ),( F . That is the stopping condition may read . 1 2 1    ttt (15) It is clear, that the stopping condition (15) is satisfied in a finite number of iterations for any 0> . However, we do not have any result which would relate a solution ),(  satisfying the stop- ping condition (15) to the optimal solution of the LP-M3N problem (12). Derivation of theoretically grounded stopping condition will be a subject of our future research. 6. Experiments We consider a problem of learning the max- sum classifier (1) for their color image segmenta- tion. The training examples are color images along with ground-truth segmentation produced by a human annotator. The task is to learn the classifier (1) which produces the segmentation similar to the human. We use the Hamming loss  ˆ ˆ( , ) = [ ]t tt L y y y y  . The images are snapshots of a shape-sorter puzzle placed on a carpet. Figure shows example images. The task is to segment the input images into color blobs corresponding to the carpet and 5 colored puzzle pieces. The images are split into training set (14 images 100][100 pixels), the validation set ( 4 images 100][100 pixels) and testing set ( 4 images 200][200 pixels). The objects  correspond to pixels of the in- put image. The edges  captures the 4-neighborho- od structure of the pixels, that is, the graph ),(  УСиМ, 2011, № 2 33 is a discrete grid (c.f. Section 2 for definition). The observable state },{1,= Xt Nx  is a natural number which encodes the RGB color of the t-th pixel. We used 3 bits per each color chan- nel which means 512=2= 33 XN . The assignment of the t-th pixel to a segments is determined by the label },{1,= Yt Ny  . The number of seg- ments is 6=YN . We further assume that func- tions :tq and  :ttg are dis- crete functions which do not depend on the pixel t (called homogeneous model). Thus the di- mension of the parameter vector  is  YX NNn = YY NN  . Example images and their segmentation predicted by a max-sum classifier learned from examples We compared the Approximate Cutting Plane (ACP) algorithm [5] against the proposed Gener- alized Proximal Point Algorithm (GPPA) defined by Algorithm 1. We are not aware of any other discriminative approach able to solve this task. To solve the predictive step required by the ACP al- gorithm, we used a highly optimized implementa- tion of the Augmenting DAG algorithm described in [17]. Both ACP and GPPA require to compute the objective value, its sub-gradient and also to solve an instance of the QP task. We used exactly the same implementation of these sub-tasks in both methods. Both ACP and GPPA return an up- per bound of the objective value of the M3N prob- lem (8). This enables a fair comparison in terms of the objective function and the computational time (the wall clock time). The ACP algorithm also produces a lower bound )(LBF on the optimal va- lue )( *F . First, we run the ACP algorithm with stopping condition )(( UBF ( )) / ( ) 0,01LBF F   (precision 0.001 was not already attained by the ACP). Second, we run the proposed GPPA until it reached the precision better or equal to the ACP. The obtained objective function and the required computational time (on standard PC, Intel CPU 1,83 GHz, 2GB RAM) as a function of the vary- ing regularization constant are presented in Ta- ble 1. It is seen, that the GPPA algorithm consis- tently attains more precise solution in a shorter time. The average speedup was about 20, that is, GPPA was more than an order of magnitude faster compared to the ACP. For completeness, we also report the training, validation and test errors. For both algorithms these errors differed on the forth decimal place due to the tight stopping condition we used. Thus the values in Table are valid for both methods. The testing error for was 1,04  0,02. The comparison of the approximated cutting plane (ACP) algorithm and the proposed general- ized proximal point algorithm (GPPA) on color image segmentation problem. The better (smaller) values of the upper bound on the optimal value )( *F and the computation time are boldfaced. The errors are percentage of misclassified pixels. ACP of [5] Proposed GPPA C )(UBF Time [h:m:s] ),( F Time [h:m:s] TrnErr ValErr 0.01 20.6042 1:3:15 20.6018 0:7:31 3.26 2.69 0.05 50.7373 2:2:43 50.6869 0:11:5 1.93 1.06 0.10 72.9288 2:44:45 72.8832 0:12:34 1.71 0.98 0.50 197.7133 4:53:29 197.6659 0:14:48 1.11 0.09 1.00 327.7952 6:47:25 327.6003 0:19:26 1.09 0.87 5.00 1279.7376 10:15:56 1279.2701 0:21:4 0.98 0.99 27:47:33 1:26:28 7. Conclusions We have shown that the learning of a general Markov network can be expressed as a convex optimization problem which is solvable efficiently without calling any external max-sum solver. The key idea of our LP-M3N formulation is to use the Linear Programing relaxation of the max-sum problem directly in the formulation of the Maxi- 34 УСиМ, 2011, № 2 mum Margin Markov Network learning algo- rithm. The resulting LP-M 3 N problem can be solved by a plethora of algorithms for non-smooth optimization. We proposed a variant of the Gener- alized Proximal Point Algorithm which is able to solve large instances of the LP-M3N problem. The empirical comparison demonstrates that our algo- rithm speeds up the learning of general Markov networks by a factor of up to 20 compared to the Approximate Cutting Plane Algorithm, so far the only existing learning algorithm for general Markov Networks. Acknowledgments Vojtěch Franc was supported by the Czech Ministry of Education project 1M0567 and by EC projects FP7-ICT-247525 HUMAVIPS, PERG04- GA-2008-239455 SEMISOL. Any opinions ex- pressed in this paper do not necessarily reflect the views of the European Community. The Commu- nity is not liable for any use that may be made of the information contained herein. Pavel Laskov was supported by the Heisenberg Fellowship of the German Science Foundation. 1. Altun Y., Hofmann T. Large Margin Methods for Label Sequence Learning // Proc. of 8th Europ. Conf. on Speech Communication and Technology, 2003. 2. Altun Y., Tsochantaridis I., Hofmann T. Hidden Markov Support Vector Machines // Proc. of 20th Intern. Conf. on Machine Learning, 2003. 3. Collins M. Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Per- ceptron Algorithms // Proc. of the Conf. on Empirical Methods in Natural Lang. Proces., 2002. 4. Franc V. Optimization Algorithms for Kernel Methods // PhD thesis, Czech Technical University, Karlovo nám. 13, 12135, Prague, Czech Rep., July 2005. 5. Franc V., Savchynskyy B. Discriminative Learning of Max-Sum Classifiers // J. of Machine Learning Re- search. – Jan. 2008. – 9(1). – P. 67–104. 6. Koster A. Hoesel C.P.M. Kolen A.W.J. The Partial Con- straint Satisfaction Problem: Facets and Lifting Theo- rems // Operations Research Letters. – 1998. – 23(3– 5). – P. 89–97. 7. Medhi D. Ha C.D. Generalized Proximal Point Algo- rithm for Convex Optimization // J. of Optimization The- ory and Applications. – 1996. – 88(2). – P. 475–488. 8. Schlesinger M.I. Syntactic analysis of two-dimensional visual signals in noisy conditions // Kibernetika. – 1976. – N 4. – P. 113–130. In Russian. 9. Schlesinger M.I., Flach B. Some solvable sublcasses of structural recognition problems // Proc. of the Czech Pattern Recognition Workshop, 2000. Czech Pattern Recognition Society. 10. Schlesinger M.I., Giginyak V.V. Solving (max,+) prob- lems in structural recognition using equivalent trans- formations // Systems and machines for control. – 2007. – N 2. – P. 5–17. In Russian. 11. Schlesinger M.I., Hlaváč V. Ten lectures on statistical and structural pattern recognition // Kluw. Acad. Publ., 2002. 12. Taskar B. Learning Structured Prediction Models: A Large Margin Approach. PhD thesis, Stanford Univ., 2004. 13. Taskar B., Chatalbashev V., Koller D. Learning Asso- ciative Markov Networks // Proc. of 21th Intern. Conf. Machine Learning, 2004. 14. Taskar B., Guestrin C., Koller D. Maximum-margin Markov Networks // Proc. of Neural Inform. Proces. Syst., 2003. 15. Teo C.H., Vishwanathan S.V.N., Smola A., Quoc, V.Le. Bundle Methods for Regularized Risk Minimization // J. of Machine Learning Research. – 2010. – N 11. – P. 311–365. 16. Wainwright M., Jaakkola T., Willsky A. MAP estima- tion via agreement on hypertrees: message passing and linear programming approaches // Conf. on Communi- cation, Control and Computing, 2002. 17. Werner T. A Linear Programming Approach to Max- sum Problem: A Review // IEEE Transactions on Pat- tern Analysis and Machine Intelligence. – 2007. – 29(7). © V. Franc, Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech Techni- cal University, Technická 2, 166 27 Prague 6, Czech Republic, P. Laskov, Wilhelm-Schickard-Institut für Informatik, Sand 13, 72076 Tübingen, Germany, 2011  << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E> /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e> /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e> /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E> /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e> /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e> /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e> /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e> /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e> /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e> /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e> /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e> /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e> /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice