2025-02-22T10:42:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22journaliasakpiua-article-101845%22&qt=morelikethis&rows=5
2025-02-22T10:42:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22journaliasakpiua-article-101845%22&qt=morelikethis&rows=5
2025-02-22T10:42:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:42:27-05:00 DEBUG: Deserialized SOLR response

Багатофакторний конвергенційно-націлений оператор для генетичного алгоритму

Optimization of complex particle transport simulation packages could be managed using genetic algorithms as a tuning instrument for learning statistics and behavior of multi-objective optimisation functions. Combination of genetic algorithm and unsupervised machine learning could significantly incre...

Full description

Saved in:
Bibliographic Details
Main Authors: Shadura, Oksana, Petrenko, Anatoly I., Svistunov, Sergiy Ya.
Format: Article
Language:English
Published: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2017
Subjects:
Online Access:http://journal.iasa.kpi.ua/article/view/101845
Tags: Add Tag
No Tags, Be the first to tag this record!