Синтез та адаптивне настроювання моделей GARCH для прогнозування дисперсій гетероскедастичних процесів з різнотемповою дискретизацією

Theoretical propositions concerning design of GARCH models for forecasting conditional dispersions of heteroscedastic processes under discretization of input disturbances with small sampling periods and output coordinates with large ones are considered. The dynamics of processes in a stochastic medi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Romanenko, V. D., Bilyi, O. V.
Формат: Стаття
Мова:rus
Опубліковано: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2017
Онлайн доступ:http://journal.iasa.kpi.ua/article/view/109779
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:System research and information technologies

Репозиторії

System research and information technologies
Опис
Резюме:Theoretical propositions concerning design of GARCH models for forecasting conditional dispersions of heteroscedastic processes under discretization of input disturbances with small sampling periods and output coordinates with large ones are considered. The dynamics of processes in a stochastic medium is described by models of autoregression and sliding mean with multirate discretization. An algorithm for adaptive setting of the GARCH model coefficients concerning the sliding mean is developed. Experimental results for adaptive setting of GARCH model optimal coefficients as well as forecasting conditional dispersions under optimal coefficients are presented.