Адаптивне керування славкокерованими марковськими та напівмарковськими моделями в дискретному часі

A Bayesian approach to Markov decision process problem [1] under stochastic uncertainty, when unknown transition probabilities are weakly disturbed with disturbances dependent on a decision strategy only is investigated. Observed decision process is assumed to be stationary in discrete time with fin...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автор: Andreev, N. V.
Формат: Стаття
Мова:Ukrainian
Опубліковано: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2019
Онлайн доступ:http://journal.iasa.kpi.ua/article/view/174306
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:System research and information technologies

Репозитарії

System research and information technologies
Опис
Резюме:A Bayesian approach to Markov decision process problem [1] under stochastic uncertainty, when unknown transition probabilities are weakly disturbed with disturbances dependent on a decision strategy only is investigated. Observed decision process is assumed to be stationary in discrete time with finite, countable or measurable phase state is based on separation principle of assessment and optimization problems.