Загальна методика прогнозування нелінійних нестаціонарних процесів на основі математичних моделей з використанням статистичних даних

The article considers the problem of forecasting nonlinear nonstationary processes, presented in the form of time series, which can describe the dynamics of processes in both technical and economic systems. The general technique of analysis of such data and construction of corresponding mathematical...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Belas, Oleg, Belas, Andrii
Формат: Стаття
Мова:Ukrainian
Опубліковано: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2021
Теми:
Онлайн доступ:http://journal.iasa.kpi.ua/article/view/236713
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:System research and information technologies

Репозитарії

System research and information technologies
Опис
Резюме:The article considers the problem of forecasting nonlinear nonstationary processes, presented in the form of time series, which can describe the dynamics of processes in both technical and economic systems. The general technique of analysis of such data and construction of corresponding mathematical models based on autoregressive models and recurrent neural networks is described in detail. The technique is applied on practical examples while performing the comparative analysis of models of forecasting of quantity of channels of service of cellular subscribers for a given station and revealing advantages and disadvantages of each method. The need to improve the existing methodology and develop a new approach is formulated.