Застосування методу двобічних наближень до розв’язання першої крайової задачі для одновимірного нелінійного рівняння теплопровідності

The first boundary value problem for a one-dimensional nonlinear heat equation is considered, where the heat conductivity coefficient and the power function of heat sources have a power-law dependence on temperature. For a numerical analysis of this problem, it is proposed to use the method of two-s...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Gybkina, Nadiia, Sidorov, Maxim, Vasylyshyn, Kostiantyn
Формат: Стаття
Мова:English
Опубліковано: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2021
Теми:
Онлайн доступ:http://journal.iasa.kpi.ua/article/view/240131
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:System research and information technologies

Репозитарії

System research and information technologies
Опис
Резюме:The first boundary value problem for a one-dimensional nonlinear heat equation is considered, where the heat conductivity coefficient and the power function of heat sources have a power-law dependence on temperature. For a numerical analysis of this problem, it is proposed to use the method of two-sided approximations based on the method of Green’s functions. After replacing the unknown function, the boundary value problem is reduced to the Hammerstein integral equation, which is considered as a nonlinear operator equation in a semi-ordered Banach space. The conditions for the existence of a single positive solution of the problem and the conditions for two-sided convergence of successive approximations to it are obtained. The developed method is programmatically implemented and researched in solving test problems. The results of the computational experiment are illustrated by graphical and tabular information. The conducted experiments confirmed the efficiency and effectiveness of the developed method that allowed recommending its practical use for solving problems of system analysis and mathematical modeling of nonlinear processes.