Інтегральні зображення додатно визначених ядер
The paper proposes proof of the possibility of an integral representation of a positive definite kernel of two pairs of variables. Using this kernel, we use the technique of constructing a new Hilbert space in which symmetric differential operators formally commute. In this case, the kernel satisfie...
Збережено в:
Дата: | 2023 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
2023
|
Теми: | |
Онлайн доступ: | http://journal.iasa.kpi.ua/article/view/279777 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | System research and information technologies |
Репозитарії
System research and information technologiesРезюме: | The paper proposes proof of the possibility of an integral representation of a positive definite kernel of two pairs of variables. Using this kernel, we use the technique of constructing a new Hilbert space in which symmetric differential operators formally commute. In this case, the kernel satisfies a system of differential equations with partial derivatives. It is known that a kernel given in a subdomain of the real plane, generally speaking, does not always imply an extension to the entire plane. This possibility is related to the problem of the existence of a commuting self-adjoint extension of symmetric operators. The author applies his own results related to a commuting self-adjoint extension in a wider Hilbert space. The resulting representation in the form of an integral of elementary positive-definite kernels with respect to the spectral measure generated by the resolution of the identity of the operators allows us to extend the positive-definite kernel to the entire plane. |
---|