Статистичні методи інженерії ознак для задачі класифікації стану лісів за супутниковими даними

Timely detection of forest diseases is an important task for their prevention and spread limitation. The usage of satellite imagery provides capabilities for large-scale forest monitoring. Machine learning models allow to automate the analysis of these data for anomaly detection indicating diseases....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Salii, Yevhenii, Lavreniuk, Alla, Kussul, Nataliia
Формат: Стаття
Мова:English
Опубліковано: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2024
Теми:
Онлайн доступ:http://journal.iasa.kpi.ua/article/view/286178
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:System research and information technologies

Репозитарії

System research and information technologies
Опис
Резюме:Timely detection of forest diseases is an important task for their prevention and spread limitation. The usage of satellite imagery provides capabilities for large-scale forest monitoring. Machine learning models allow to automate the analysis of these data for anomaly detection indicating diseases. However, selecting informative features is key to building an effective model. In this work, the application of Bhattacharyya distance and Spearman’s rank correlation coefficient for feature selection from satellite images was investigated. A greedy algorithm was applied to form a subset of weakly correlated features. The experiment showed that selected features allow for improving the classification quality compared to using all spectral bands. The proposed approach demonstrates effectiveness for informative and weakly correlated feature selection and can be utilized in other remote sensing tasks.