Багатофакторне прогнозування статистичних трендів для задач data science
The article deals with the processes of multi-factor forecasting of statistical trends for Data Science problems. Most of the classic approaches to data processing consist of studying the consequences of phenomena rather than the factors of their appearance. At the same time, the factors affecting t...
Saved in:
| Date: | 2024 |
|---|---|
| Main Authors: | , , , |
| Format: | Article |
| Language: | English |
| Published: |
The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
2024
|
| Subjects: | |
| Online Access: | http://journal.iasa.kpi.ua/article/view/287739 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | System research and information technologies |
Institution
System research and information technologies| Summary: | The article deals with the processes of multi-factor forecasting of statistical trends for Data Science problems. Most of the classic approaches to data processing consist of studying the consequences of phenomena rather than the factors of their appearance. At the same time, the factors affecting the behavior of the investigated process are assumed to be random and are not investigated. The article discusses the approach to forecasting the parameters of the trend of statistical time series, which consists of the study of factors that lead to changes in the dynamics of the studied process. This approach potentially has better indicators of adequacy, accuracy, and efficiency in obtaining final solutions than classical approaches. The implementation of this approach is shown using an example of the analysis of exchange rate changes. The obtained results show the practicality of considering multi-factoriality in forecasting tasks. |
|---|