Багатокритеріальна математична модель кредитного скорингу в задачах data science
A multi-criteria optimization mathematical model of credit scoring is proposed. The model is derived using a nonlinear trade-off scheme to solve multi-criteria optimization problems, allowing for the construction of a Pareto-optimal solution. The proposed approach forms an integrated assessment of a...
Збережено в:
| Дата: | 2025 |
|---|---|
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
2025
|
| Теми: | |
| Онлайн доступ: | http://journal.iasa.kpi.ua/article/view/308786 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | System research and information technologies |
Репозитарії
System research and information technologies| Резюме: | A multi-criteria optimization mathematical model of credit scoring is proposed. The model is derived using a nonlinear trade-off scheme to solve multi-criteria optimization problems, allowing for the construction of a Pareto-optimal solution. The proposed approach forms an integrated assessment of a borrower’s creditworthiness based on a structured set of indicators that reflect the financial, credit, and social profile of clients. The model is designed for use in intelligent CRM and ERP systems operating on Big Data and does not rely on labeled training samples, making it applicable to unsupervised learning tasks. It can also serve as a foundational layer for further deep-learning analysis. Methodological steps for implementing the model, from indicator normalization to final decision-making, are described. A technological implementation demonstrates the model’s effectiveness in automated loan decisions and fraud detection. |
|---|