Методи роєвого штучного інтелекту в завданнях автономної навігації БПЛА

This paper presents a comparative analysis of nine swarm intelligence (SI) methods in terms of their suitability for onboard AI platforms in autonomous unmanned aerial vehicle (UAV) swarms. A set of key criteria is defined, including computational complexity, scalability, latency, robustness to agen...

Full description

Saved in:
Bibliographic Details
Date:2025
Main Authors: Zgurovsky, Michael, Zaychenko, Yuriy, Tytarenko, Andrii, Kuzmenko, Oleksii
Format: Article
Language:English
Published: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2025
Subjects:
Online Access:http://journal.iasa.kpi.ua/article/view/343081
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:System research and information technologies

Institution

System research and information technologies
Description
Summary:This paper presents a comparative analysis of nine swarm intelligence (SI) methods in terms of their suitability for onboard AI platforms in autonomous unmanned aerial vehicle (UAV) swarms. A set of key criteria is defined, including computational complexity, scalability, latency, robustness to agent loss, and adaptability. Decentralized Behavior Trees (BTs) are identified as the most balanced approach for the reactive behavior layer, while the global swarm optimization method GBestPSO proves effective for high-level planning. A hybrid two-layer cognitive architecture is proposed that integrates BTs and GBestPSO, with functional separation between layers and communication based on DDS/RTPS protocols. The architecture exhibits high autonomy, fault tolerance, modularity, and suitability for real-time embedded systems operating in dynamic or adversarial environments. The results were partially supported by the National Research Foundation of Ukraine, grant No. 2025.06/0022 “AI platform with cognitive services for coordinated autonomous navigation of distributed systems consisting of a large number of objects”.