Динамическое поведение армированных квадратных пластин со смешанными условиями закрепления сторон при термосиловом нагружении

В рамках модели идеального жесткопластического материала с использованием структурной модели армированного слоя с одномерным напряженным состоянием в волокнах проанализирован динамический изгиб армированных металлокомпозитных квадратных пластин со смешанными условиями закрепления сторон в условиях т...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Немировский, Ю. В.; Ин-т теор. и прикл. механики им. С. А. Христиановича СО РАН, Новосибирск, Российская Федерация, Романова, Т. П.; Ин-т теор. и прикл. механики им. С. А. Христиановича СО РАН, Новосибирск, Российская Федерация
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine 2016
Online Zugang:http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/1759
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Prykladni Problemy Mekhaniky i Matematyky

Institution

Prykladni Problemy Mekhaniky i Matematyky
Beschreibung
Zusammenfassung:В рамках модели идеального жесткопластического материала с использованием структурной модели армированного слоя с одномерным напряженным состоянием в волокнах проанализирован динамический изгиб армированных металлокомпозитных квадратных пластин со смешанными условиями закрепления сторон в условиях термосилового нагружения. На пластины действует равномерно распределенная по поверхности кратковременная динамическая нагрузка высокой интенсивности взрывного типа и тепловая, одинаковая с лицевых поверхностей. Они обладают слоисто-волокнистой структурой, симметричной относительно срединной поверхности. Волокна арматуры, выполненные из различных материалов, расположены в направлениях, параллельных к контуру пластины. В зависимости от параметров армирования, теплового воздействия и амплитуды нагрузки возможны разные механизмы деформирования пластин. Для них получены уравнения динамического деформирования и выписаны условия их реализации. Построены уравнения для определения предельных нагрузок, времени деформирования и остаточных прогибов пластин.