Стандартна форма матриць над кільцем цілих гаусових чисел відносно (z,k)-еквівалентності

The standard form of matrices over quadratic rings with respect to (z,k)-equivalence is investigated. It is established that the standard form of matrices over quadratic ring of Gaussian integers, the Euclidean norms of the determinants of which are less than four, is equal to its canonical diagonal...

Full description

Saved in:
Bibliographic Details
Date:2020
Main Authors: Petrychkovych, V. M.; Петричкович В. М.; Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України, Львів, Zelisko, H. V.; Зеліско Г. В.; Львівський національний університет ім. Івана Франка, Львів, Ladzoryshyn, N. B.; Ладзоришин Н. Б.; Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України, Львів
Format: Article
Language:Ukrainian
Published: Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine 2020
Subjects:
Online Access:http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/apmm2020.18.5-10
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Prykladni Problemy Mekhaniky i Matematyky

Institution

Prykladni Problemy Mekhaniky i Matematyky
Description
Summary:The standard form of matrices over quadratic rings with respect to (z,k)-equivalence is investigated. It is established that the standard form of matrices over quadratic ring of Gaussian integers, the Euclidean norms of the determinants of which are less than four, is equal to its canonical diagonal form. Such matrices over quadratic ring of Gaussian integers are (z,k)-equivalent if and only if they are equivalent, i.e. their canonical diagonal forms are equal.  Cite as: V. M. Petrychkovych, H. V. Zelisko, N. B. Ladzoryshyn, “The standard form of matrices over the ring of Gaussian integers with respect to (z, k)-equivalence,” Prykl. Probl. Mekh. Mat., Issue 18, 5–10 (2020) (in Ukrainian), https://doi.org/10.15407/apmm2020.18.5-10