Аналог інтегральної задачі для рівнянь зі частинними похідними над полем p-адичних чисел

The paper deals with a problem with integral conditions with respect to the chosen variable for a second order linear differential-operator equation with the Hermite differential operator over the field of p-adic numbers. The space of analytic functions over non-archimedean functional space builded...

Full description

Saved in:
Bibliographic Details
Date:2020
Main Author: Kuz', A. M.; Кузь А. М.; Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України, Львів
Format: Article
Language:Ukrainian
Published: Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine 2020
Subjects:
Online Access:http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/apmm2020.18.121-132
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Prykladni Problemy Mekhaniky i Matematyky

Institution

Prykladni Problemy Mekhaniky i Matematyky
Description
Summary:The paper deals with a problem with integral conditions with respect to the chosen variable for a second order linear differential-operator equation with the Hermite differential operator over the field of p-adic numbers. The space of analytic functions over non-archimedean functional space builded by Hermite poynomials is described. The criterion of uniqueness and the sufficient conditions of existence of a solution of the problem in the corresponding functional space are established. The solution of the problem is built in the form of series of Hermite poynomials.  Cite as: A. M. Kuz’, “Analogue of the integral problem for the partial differential equation over p-adic number field,” Prykl. Probl. Mekh. Mat., Issue 18, 121–132 (2020) (in Ukrainian), https://doi.org/10.15407/apmm2020.18.121-132