Аналог інтегральної задачі для рівнянь зі частинними похідними над полем p-адичних чисел
The paper deals with a problem with integral conditions with respect to the chosen variable for a second order linear differential-operator equation with the Hermite differential operator over the field of p-adic numbers. The space of analytic functions over non-archimedean functional space builded...
Збережено в:
| Дата: | 2020 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2020
|
| Теми: | |
| Онлайн доступ: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/apmm2020.18.121-132 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Prykladni Problemy Mekhaniky i Matematyky |
Репозитарії
Prykladni Problemy Mekhaniky i Matematyky| Резюме: | The paper deals with a problem with integral conditions with respect to the chosen variable for a second order linear differential-operator equation with the Hermite differential operator over the field of p-adic numbers. The space of analytic functions over non-archimedean functional space builded by Hermite poynomials is described. The criterion of uniqueness and the sufficient conditions of existence of a solution of the problem in the corresponding functional space are established. The solution of the problem is built in the form of series of Hermite poynomials. Cite as: A. M. Kuz’, “Analogue of the integral problem for the partial differential equation over p-adic number field,” Prykl. Probl. Mekh. Mat., Issue 18, 121–132 (2020) (in Ukrainian), https://doi.org/10.15407/apmm2020.18.121-132 |
|---|