2025-02-23T06:52:59-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22journalsiapmmlvivua-article-3520%22&qt=morelikethis&rows=5
2025-02-23T06:52:59-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22journalsiapmmlvivua-article-3520%22&qt=morelikethis&rows=5
2025-02-23T06:52:59-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T06:52:59-05:00 DEBUG: Deserialized SOLR response
Лінійні матричні різносторонні рівняння над квадратичними кільцями з інволюцією
Necessary and sufficient conditions for the existence of the Sylvester-type solutions of linear matrix equations over quadratic rings $K=\mathbb{Z}[\sqrt k]$ with involution are established. The criterion of the existence and uniqueness of integer solutions, that is, solutions over the ring of integ...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Published: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2023
|
Subjects: | |
Online Access: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/apmm2023.21.5-16 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Necessary and sufficient conditions for the existence of the Sylvester-type solutions of linear matrix equations over quadratic rings $K=\mathbb{Z}[\sqrt k]$ with involution are established. The criterion of the existence and uniqueness of integer solutions, that is, solutions over the ring of integers $\mathbb{Z}$ of such equations, is indicated. The conditions are given in terms of the equivalence of matrices with elements from the ring of integers, which are constructed from the coefficients of the matrix equation using the Kronecker product of matrices. Cite as: H. V. Zelisko, N. B. Ladzoryshyn, V. M. Petrychkovych, “Linear matrix two-sided equations over quadratic rings with involution,” Prykl. Probl. Mekh. Mat., Issue 21, 5–16 (2023) (in Ukrainian), https://doi.org/10.15407/apmm2023.21.5-16 |
---|