Neural network modeling of Herglotz—Wiechert inversion of multiparametric travel-time curves of seismic waves

Using artificial neural networks to solve a problem of plotting travel-time curves of seismic waves can create nonlinear travel-time model of P and S phases of seismic waves arrangement as a function of several arguments: source depth, magnitude, back azimuth and epicenter distance. Construction of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Lazarenko, M., Herasymenko, O.
Format: Artikel
Sprache:Englisch
Veröffentlicht: S. Subbotin Institute of Geophysics of the NAS of Ukraine 2017
Schlagworte:
Online Zugang:https://journals.uran.ua/geofizicheskiy/article/view/107503
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Geofizicheskiy Zhurnal

Institution

Geofizicheskiy Zhurnal
Beschreibung
Zusammenfassung:Using artificial neural networks to solve a problem of plotting travel-time curves of seismic waves can create nonlinear travel-time model of P and S phases of seismic waves arrangement as a function of several arguments: source depth, magnitude, back azimuth and epicenter distance. Construction of three-dimensional travel-time relationships and their use for modeling of hadographs and their inversion are considered on examples of seismic records Ukrainian seismic stations. Examples of inversion locus within the model Herglotz—Wiechert and features of application of the model in a real environment for single seismic stations, and generalization for arbitrary coordinate of the source and the point of signal registration in the Black Sea region are given.