Optimal packing of convex polytopes using quasi-phi-functions

We study a packing problem of a given collection of convex polytopes into a rectangular container of minimal volume. Continuous rotations and translations of polytopes are allowed. In addition a given minimal allowable distances between polytopes are taking into account. We employ radical free quasi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Pankratov, A. V., Romanova, T. E., Chugay, A. M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут енергетичних машин і систем ім. А. М. Підгорного Національної академії наук України 2015
Schlagworte:
Online Zugang:https://journals.uran.ua/jme/article/view/46687
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mechanical Engineering

Institution

Journal of Mechanical Engineering
Beschreibung
Zusammenfassung:We study a packing problem of a given collection of convex polytopes into a rectangular container of minimal volume. Continuous rotations and translations of polytopes are allowed. In addition a given minimal allowable distances between polytopes are taking into account. We employ radical free quasi-phi-functions and adjusted quasi-phi-functions to describe placement constraints. The use of quasi-phi-functions, instead of phi-functions, allows us to simplify non-overlapping, as well as, to describe distance constraints, but there is a price to pay: now the optimization has to be performed over a larger set of parameters, including the extra variables used by our new functions. We provide an exact mathematical model of the problem as a nonlinear programming problem. We also develop an efficient solution algorithm which involves a starting point algorithm, using homothetic trasformations of geometric objects and efficient local optimization procedure, which allows us to runtime and memory). We present here a number of examples to demonstrate the efficiency of our methodology.