New Approaches for Reducing Artificial Oscillations in Numerical Solutions. Anti-Diffusion, Anti-Dispersion and Longoliers

Two most known errors is the artificial smoothing of the solution and oscillations in the solutions near the places with high derivatives of the solutions (near the sharp fronts of the solution). Some methods of improving numerical solutions of evolution equations are proposed on the base of theoret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
1. Verfasser: Макаренко, Александр Сергеевич
Format: Artikel
Sprache:Russisch
Veröffentlicht: Кам'янець-Подільський національний університет імені Івана Огієнка 2019
Online Zugang:http://mcm-math.kpnu.edu.ua/article/view/174183
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Mathematical and computer modelling. Series: Physical and mathematical sciences

Institution

Mathematical and computer modelling. Series: Physical and mathematical sciences
Beschreibung
Zusammenfassung:Two most known errors is the artificial smoothing of the solution and oscillations in the solutions near the places with high derivatives of the solutions (near the sharp fronts of the solution). Some methods of improving numerical solutions of evolution equations are proposed on the base of theoretical considerations. The artificial viscosity and artificial dispersion for difference schemes of gas dynamics are proposed as the first examples. A new class of tools for improving numerical solutions is proposed — «Langoliers». «Langoliers» are special difference operators which should be applied at each time steps after the running of original difference schemes. The design of «Langoliers» allows reducing the dissipative and dispersive errors of schemes. The examples are anti-diffusion, anti-dispersion and specially constructed difference schemes