ОПУКЛЕ ПРОДОВЖЕННЯ КУБІЧНИХ МНОГОЧЛЕНІВ НА ПЕРЕСТАВЛЕННЯХ ТА ЙОГО ЗАСТОСУВАННЯ У РОЗВ’ЯЗАННІ ПРАКТИЧНИХ ЗАДАЧ ОПТИМІЗАЦІЇ
Представлено два методи побудови опуклого продовження кубічного многочлена на переставленнях — один метод аналітичний, другий — ітераційний, який є модифікацією метода Стояна-Яковлева побудови опуклих продовжень многочленів на вершинно розташованих множинах. Продемонстровано переваги аналітичного ме...
Gespeichert in:
| Datum: | 2010 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Ukrainisch |
| Veröffentlicht: |
Кам'янець-Подільський національний університет імені Івана Огієнка
2010
|
| Online Zugang: | http://mcm-math.kpnu.edu.ua/article/view/23722 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Mathematical and computer modelling. Series: Physical and mathematical sciences |
Institution
Mathematical and computer modelling. Series: Physical and mathematical sciences| Zusammenfassung: | Представлено два методи побудови опуклого продовження кубічного многочлена на переставленнях — один метод аналітичний, другий — ітераційний, який є модифікацією метода Стояна-Яковлева побудови опуклих продовжень многочленів на вершинно розташованих множинах. Продемонстровано переваги аналітичного методу — можливість записати шукане опукле продовження в явному вигляді, використовуючи коефіцієнти вихідної функції й мультимножину, з якої формуються переставлення, а також суттєве зменшення кількості доданків у результуючому виразі порівняно з ітераційним методом. Побудова опуклих продовжень многочленів дозволяє використовувати апарат опуклого програмування для розв'язування практичних задач, що формулюються в вигляді оптимізаційних із поліноміальною цільовою функцією на переставленнях. |
|---|