Моделювання нелінійних кіл енегретичних систем за допомогою рядів Вольтерри: критерії збіжності та межі стійкості при періодичному збудженні

This paper derives sufficient conditions for the convergence of Volterra series representing solutions to a class of nonlinear integral equations that model energy objects’ dynamic networks with periodic input signals. By formulating the system’s response through a nonlinear integral equation, we es...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автор: Верлань, Андрій
Формат: Стаття
Мова:English
Опубліковано: Kamianets-Podilskyi National Ivan Ohiienko University 2025
Онлайн доступ:http://mcm-tech.kpnu.edu.ua/article/view/334097
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Mathematical and computer modelling. Series: Technical sciences

Репозитарії

Mathematical and computer modelling. Series: Technical sciences
Опис
Резюме:This paper derives sufficient conditions for the convergence of Volterra series representing solutions to a class of nonlinear integral equations that model energy objects’ dynamic networks with periodic input signals. By formulating the system’s response through a nonlinear integral equation, we establish rigorous criteria for the absolute convergence of the Volterra series expansion. Specifically, we analyze energy objects’ networks containing ideal bandpass filters excited by trigonometric polynomial inputs, a configuration common in simplified analyses of physically realizable systems. For energy systems’ resistive nonlinear chains, we demonstrate that the Volterra series reduces to a power series and provide explicit estimates of its convergence radius (Theoretical statement 3). Additionally, Theoretical statements 1 and 2 present generalized convergence criteria based on the minimization of a functional over a constrained spatial domain, extending prior results for NARX-type systems. The results can contribute to bridging theoretical analysis with engineering applications, offering practical tools for designing nonlinear energy systems’ chains with predictable dynamics, such as those found in power electronics and signal processing systems.