Математична модель реології фрактально-неоднорідних пластових систем

The conditions of «smoothness» of heterogeneous components Front separation (heterogeneous) systems by analyzing the «jump» feature in saturation Bakley-Leverett. It is shown that «jump» saturation absent, and the division front was moving and keeps the «smoothness» when the movable components that...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Положаєнко, Сергій Анатолійович, Савіч, Віталій Святославович
Формат: Стаття
Мова:Ukrainian
Опубліковано: Kamianets-Podilskyi National Ivan Ohiienko University 2016
Онлайн доступ:http://mcm-tech.kpnu.edu.ua/article/view/94245
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Mathematical and computer modelling. Series: Technical sciences

Репозитарії

Mathematical and computer modelling. Series: Technical sciences
Опис
Резюме:The conditions of «smoothness» of heterogeneous components Front separation (heterogeneous) systems by analyzing the «jump» feature in saturation Bakley-Leverett. It is shown that «jump» saturation absent, and the division front was moving and keeps the «smoothness» when the movable components that squeezes does not exceed movable components that squeezed. Also show that violations of the «smoothness» Front separation leads to inhomogeneous fractal structure process rheology. A numerical values fractal dimension of the front division for rheological process that occurs in real geological conditions. The mathematical model of fractal-heterogeneous systems in a class of varitional inequalities.