Математична модель реології фрактально-неоднорідних пластових систем
The conditions of «smoothness» of heterogeneous components Front separation (heterogeneous) systems by analyzing the «jump» feature in saturation Bakley-Leverett. It is shown that «jump» saturation absent, and the division front was moving and keeps the «smoothness» when the movable components that...
Збережено в:
| Дата: | 2016 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Kamianets-Podilskyi National Ivan Ohiienko University
2016
|
| Онлайн доступ: | http://mcm-tech.kpnu.edu.ua/article/view/94245 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Mathematical and computer modelling. Series: Technical sciences |
Репозитарії
Mathematical and computer modelling. Series: Technical sciences| Резюме: | The conditions of «smoothness» of heterogeneous components Front separation (heterogeneous) systems by analyzing the «jump» feature in saturation Bakley-Leverett. It is shown that «jump» saturation absent, and the division front was moving and keeps the «smoothness» when the movable components that squeezes does not exceed movable components that squeezed. Also show that violations of the «smoothness» Front separation leads to inhomogeneous fractal structure process rheology. A numerical values fractal dimension of the front division for rheological process that occurs in real geological conditions. The mathematical model of fractal-heterogeneous systems in a class of varitional inequalities. |
|---|