Математична модель реології фрактально-неоднорідних пластових систем

The conditions of «smoothness» of heterogeneous components Front separation (heterogeneous) systems by analyzing the «jump» feature in saturation Bakley-Leverett. It is shown that «jump» saturation absent, and the division front was moving and keeps the «smoothness» when the movable components that...

Full description

Saved in:
Bibliographic Details
Date:2016
Main Authors: Положаєнко, Сергій Анатолійович, Савіч, Віталій Святославович
Format: Article
Language:Ukrainian
Published: Kamianets-Podilskyi National Ivan Ohiienko University 2016
Online Access:http://mcm-tech.kpnu.edu.ua/article/view/94245
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Mathematical and computer modelling. Series: Technical sciences

Institution

Mathematical and computer modelling. Series: Technical sciences
Description
Summary:The conditions of «smoothness» of heterogeneous components Front separation (heterogeneous) systems by analyzing the «jump» feature in saturation Bakley-Leverett. It is shown that «jump» saturation absent, and the division front was moving and keeps the «smoothness» when the movable components that squeezes does not exceed movable components that squeezed. Also show that violations of the «smoothness» Front separation leads to inhomogeneous fractal structure process rheology. A numerical values fractal dimension of the front division for rheological process that occurs in real geological conditions. The mathematical model of fractal-heterogeneous systems in a class of varitional inequalities.