Travelling waves dynamics in a nonlinear parabolic equation with a shifted spatial argument
The local dynamics of a nonlinear parabolic equation on a circle with a shifted spatial argument and a small di usion is studied. It is proved that the travelling waves interaction satis es to 1:2 principle. The maximum principle for amplitudes with coe cient 2/3 is established. A number of stable t...
Gespeichert in:
| Veröffentlicht in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Datum: | 2005 |
| 1. Verfasser: | Belan, E.P. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2005
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/106562 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Travelling waves dynamics in a nonlinear parabolic equation with a shifted spatial argument / E.P. Belan // Журнал математической физики, анализа, геометрии. — 2005. — Т. 1, № 1. — С. 3-34. — Бібліогр.: 37 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
The Cauchy problem for a stochastic parabolic equation with a deviation of the argument
von: H. M. Perun, et al.
Veröffentlicht: (2022) -
A Cauchy problem for autonomous quasilinear parabolic pseudo-differential equations with argument deviation
von: Ya. M. Drin, et al.
Veröffentlicht: (2013) -
Nonlocal problem for autonomous quasilinear parabolic pseudodifferential equations with deviating argument
von: Ya. M. Drin, et al.
Veröffentlicht: (2015) -
The Existence of Heteroclinic TravellingWaves in the Discrete Sine-Gordon Equation with Nonlinear Interaction on a 2D-Lattice
von: S. Bak
Veröffentlicht: (2018) -
The Existence of Heteroclinic Travelling Waves in the Discrete Sine-Gordon Equation with Nonlinear Interaction on a 2D-Lattice
von: Bak, S.
Veröffentlicht: (2018)