Daugavet Centers
An operator G: X → Y is said to be a Daugavet center if ||G + T|| = ||G|| + ||T|| for every rank-1 operator T: X → Y . The main result of the paper is: if G: X →! Y is a Daugavet center, Y is a subspace of a Banach space E, and J : Y → E is the natural embedding operator, then E can be equivalently...
Gespeichert in:
| Veröffentlicht in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Datum: | 2010 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2010
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/106629 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Daugavet Centers / T. Bosenko, V. Kadets // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 1. — С. 3-20. — Бібліогр.: 14 назв. — англ. |