Daugavet Centers

An operator G: X → Y is said to be a Daugavet center if ||G + T|| = ||G|| + ||T|| for every rank-1 operator T: X → Y . The main result of the paper is: if G: X →! Y is a Daugavet center, Y is a subspace of a Banach space E, and J : Y → E is the natural embedding operator, then E can be equivalently...

Full description

Saved in:
Bibliographic Details
Published in:Журнал математической физики, анализа, геометрии
Date:2010
Main Authors: Bosenko, T., Kadets, V.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2010
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/106629
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Daugavet Centers / T. Bosenko, V. Kadets // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 1. — С. 3-20. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine

Similar Items