A Symmetric Model of Viscous Relaxing Fluid. An Evolution Problem
An evolution problem on small motions of the viscous rotating relaxing fluid in a bounded domain is studied. The problem is reduced to the Cauchy problem for the first-order integro-differential equation in a Hilbert space. Using this equation, we prove a strong unique solvability theorem for the co...
Saved in:
| Published in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Date: | 2012 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2012
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/106718 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | A Symmetric Model of Viscous Relaxing Fluid. An Evolution Problem / D. Zakora // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 2. — С. 190-206. — Бібліогр.: 13 назв. — англ. |