An Application of Kadets-Pełczyński Sets to Narrow Operators

A known analogue of the Pitt compactness theorem for function spaces asserts that if 1 ≤ p < 2 and p < r < ∞, then every operator T : Lp → Lr is narrow. Using a technique developed by M.I. Kadets and A. Pełczyński, we prove a similar result. More precisely, if 1 ≤ p ≤ 2 and F is a Köthe {Ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Журнал математической физики, анализа, геометрии
Datum:2013
Hauptverfasser: Krasikova, I.V., Popov, M.M.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/106739
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:An Application of Kadets-Pełczyński Sets to Narrow Operators / I.V. Krasikova, M.M. Popov // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 1. — С. 102-107. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine