An Application of Kadets-Pełczyński Sets to Narrow Operators
A known analogue of the Pitt compactness theorem for function spaces asserts that if 1 ≤ p < 2 and p < r < ∞, then every operator T : Lp → Lr is narrow. Using a technique developed by M.I. Kadets and A. Pełczyński, we prove a similar result. More precisely, if 1 ≤ p ≤ 2 and F is a Köthe {Ba...
Saved in:
| Published in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Date: | 2013 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2013
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/106739 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | An Application of Kadets-Pełczyński Sets to Narrow Operators / I.V. Krasikova, M.M. Popov // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 1. — С. 102-107. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-106739 |
|---|---|
| record_format |
dspace |
| spelling |
Krasikova, I.V. Popov, M.M. 2016-10-03T18:13:15Z 2016-10-03T18:13:15Z 2013 An Application of Kadets-Pełczyński Sets to Narrow Operators / I.V. Krasikova, M.M. Popov // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 1. — С. 102-107. — Бібліогр.: 14 назв. — англ. 1812-9471 https://nasplib.isofts.kiev.ua/handle/123456789/106739 A known analogue of the Pitt compactness theorem for function spaces asserts that if 1 ≤ p < 2 and p < r < ∞, then every operator T : Lp → Lr is narrow. Using a technique developed by M.I. Kadets and A. Pełczyński, we prove a similar result. More precisely, if 1 ≤ p ≤ 2 and F is a Köthe {Banach space on [0; 1] with an absolutely continuous norm containing no isomorph of Lp such that F is subset of Lp, then every regular operator T : Lp → F is narrow. Известный аналог теоремы Питта о компактности для функциональных пространств утверждает, что если 1 ≤ p < 2 и p < r < ∞, то каждый оператор Lp → Lr узкий. Используя технику, разработанную М.И. Кадецем и А. Пелчинским, мы доказываем похожий результат. Именно, если 1 ≤ p ≤ 2 и F - банахово пространство Кете на [0; 1] с абсолютно непрерывной нормой, не содержащее подпространств, изоморфных Lp, причем F является подмножеством Lp, то каждый регулярный оператор T : Lp → F узкий. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Журнал математической физики, анализа, геометрии An Application of Kadets-Pełczyński Sets to Narrow Operators Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
An Application of Kadets-Pełczyński Sets to Narrow Operators |
| spellingShingle |
An Application of Kadets-Pełczyński Sets to Narrow Operators Krasikova, I.V. Popov, M.M. |
| title_short |
An Application of Kadets-Pełczyński Sets to Narrow Operators |
| title_full |
An Application of Kadets-Pełczyński Sets to Narrow Operators |
| title_fullStr |
An Application of Kadets-Pełczyński Sets to Narrow Operators |
| title_full_unstemmed |
An Application of Kadets-Pełczyński Sets to Narrow Operators |
| title_sort |
application of kadets-pełczyński sets to narrow operators |
| author |
Krasikova, I.V. Popov, M.M. |
| author_facet |
Krasikova, I.V. Popov, M.M. |
| publishDate |
2013 |
| language |
English |
| container_title |
Журнал математической физики, анализа, геометрии |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
A known analogue of the Pitt compactness theorem for function spaces asserts that if 1 ≤ p < 2 and p < r < ∞, then every operator T : Lp → Lr is narrow. Using a technique developed by M.I. Kadets and A. Pełczyński, we prove a similar result. More precisely, if 1 ≤ p ≤ 2 and F is a Köthe {Banach space on [0; 1] with an absolutely continuous norm containing no isomorph of Lp such that F is subset of Lp, then every regular operator T : Lp → F is narrow.
Известный аналог теоремы Питта о компактности для функциональных пространств утверждает, что если 1 ≤ p < 2 и p < r < ∞, то каждый оператор Lp → Lr узкий. Используя технику, разработанную М.И. Кадецем и А. Пелчинским, мы доказываем похожий результат. Именно, если 1 ≤ p ≤ 2 и F - банахово пространство Кете на [0; 1] с абсолютно непрерывной нормой, не содержащее подпространств, изоморфных Lp, причем F является подмножеством Lp, то каждый регулярный оператор T : Lp → F узкий.
|
| issn |
1812-9471 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/106739 |
| citation_txt |
An Application of Kadets-Pełczyński Sets to Narrow Operators / I.V. Krasikova, M.M. Popov // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 1. — С. 102-107. — Бібліогр.: 14 назв. — англ. |
| work_keys_str_mv |
AT krasikovaiv anapplicationofkadetspełczynskisetstonarrowoperators AT popovmm anapplicationofkadetspełczynskisetstonarrowoperators AT krasikovaiv applicationofkadetspełczynskisetstonarrowoperators AT popovmm applicationofkadetspełczynskisetstonarrowoperators |
| first_indexed |
2025-12-07T20:14:56Z |
| last_indexed |
2025-12-07T20:14:56Z |
| _version_ |
1850881864446771200 |