XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation
С помощью рентгеновской фотоэлектронной спектроскопии (РФЭС) и времяпролётной вторично-ионной масс-спектрометрии (ВП-ВИМС) проведено сравнительное исследование состава поверхности и электронной структуры катализатора Au/TiO₂ в свежеприготовленном состоянии и после его использования в реакции окислен...
Saved in:
| Date: | 2014 |
|---|---|
| Main Authors: | , , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут металофізики ім. Г.В. Курдюмова НАН України
2014
|
| Series: | Металлофизика и новейшие технологии |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/106943 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation / S.P. Chenakin, N. Kruse, M.A. Vasylyev, I.N. Makeeva // Металлофизика и новейшие технологии. — 2014. — Т. 36, № 5. — С. 597-611. — Бібліогр.: 28 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-106943 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1069432025-02-09T23:37:02Z XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation Исследование наночастиц золота на TiO₂-подложке методами РФЭС/ВП-ВИМС: влияние каталитического окисления CO Дослідження наночастинок золота на TiO₂-підкладці методами РФЕС/ЧП-ВІМС: вплив каталітичного окислення CO Chenakin, S.P. Kruse, N. Vasylyev, M.A. Makeeva, I.N. Строение и свойства наноразмерных и мезоскопических материалов С помощью рентгеновской фотоэлектронной спектроскопии (РФЭС) и времяпролётной вторично-ионной масс-спектрометрии (ВП-ВИМС) проведено сравнительное исследование состава поверхности и электронной структуры катализатора Au/TiO₂ в свежеприготовленном состоянии и после его использования в реакции окисления CO при комнатной температуре. За допомогою рентґенівської фотоелектронної спектроскопії (РФЕС) та часопролітної вторинно-іонної мас-спектрометрії (ЧП-ВІМС) проведено порівняльне дослідження складу поверхні й електронної структури каталізатора Au/TiO₂ у свіжоприготованому стані та після його використання у реакції окиснення CO за кімнатної температури. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are employed for a comparative study of the surface composition and electronic structure of an Au/TiO₂ catalyst in the asprepared state and after using it in the reaction of CO oxidation at room temperature. A partial financial support of this work from the National Academy of Sciences of Ukraine in the framework of the Fundamental Research Program ‘Fundamental Problems of Nanostructural Systems, Nanomaterials, Nanotechnologies 2010—2014’ is greatly acknowledged. 2014 Article XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation / S.P. Chenakin, N. Kruse, M.A. Vasylyev, I.N. Makeeva // Металлофизика и новейшие технологии. — 2014. — Т. 36, № 5. — С. 597-611. — Бібліогр.: 28 назв. — англ. 1024-1809 PACS: 68.35.Dv, 79.60.Bm, 82.65.+r, 82.80.Pv, 82.80.Rt DOI: http://dx.doi.org/10.15407/mfint.36.05.0597 https://nasplib.isofts.kiev.ua/handle/123456789/106943 en Металлофизика и новейшие технологии application/pdf Інститут металофізики ім. Г.В. Курдюмова НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Строение и свойства наноразмерных и мезоскопических материалов Строение и свойства наноразмерных и мезоскопических материалов |
| spellingShingle |
Строение и свойства наноразмерных и мезоскопических материалов Строение и свойства наноразмерных и мезоскопических материалов Chenakin, S.P. Kruse, N. Vasylyev, M.A. Makeeva, I.N. XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation Металлофизика и новейшие технологии |
| description |
С помощью рентгеновской фотоэлектронной спектроскопии (РФЭС) и времяпролётной вторично-ионной масс-спектрометрии (ВП-ВИМС) проведено сравнительное исследование состава поверхности и электронной структуры катализатора Au/TiO₂ в свежеприготовленном состоянии и после его использования в реакции окисления CO при комнатной температуре. |
| format |
Article |
| author |
Chenakin, S.P. Kruse, N. Vasylyev, M.A. Makeeva, I.N. |
| author_facet |
Chenakin, S.P. Kruse, N. Vasylyev, M.A. Makeeva, I.N. |
| author_sort |
Chenakin, S.P. |
| title |
XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation |
| title_short |
XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation |
| title_full |
XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation |
| title_fullStr |
XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation |
| title_full_unstemmed |
XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation |
| title_sort |
xps/tof-sims characterization of tio₂ supported au nanoparticles: effect of catalytic co oxidation |
| publisher |
Інститут металофізики ім. Г.В. Курдюмова НАН України |
| publishDate |
2014 |
| topic_facet |
Строение и свойства наноразмерных и мезоскопических материалов |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/106943 |
| citation_txt |
XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation / S.P. Chenakin, N. Kruse, M.A. Vasylyev, I.N. Makeeva // Металлофизика и новейшие технологии. — 2014. — Т. 36, № 5. — С. 597-611. — Бібліогр.: 28 назв. — англ. |
| series |
Металлофизика и новейшие технологии |
| work_keys_str_mv |
AT chenakinsp xpstofsimscharacterizationoftio2supportedaunanoparticleseffectofcatalyticcooxidation AT krusen xpstofsimscharacterizationoftio2supportedaunanoparticleseffectofcatalyticcooxidation AT vasylyevma xpstofsimscharacterizationoftio2supportedaunanoparticleseffectofcatalyticcooxidation AT makeevain xpstofsimscharacterizationoftio2supportedaunanoparticleseffectofcatalyticcooxidation AT chenakinsp issledovanienanočasticzolotanatio2podložkemetodamirfésvpvimsvliâniekatalitičeskogookisleniâco AT krusen issledovanienanočasticzolotanatio2podložkemetodamirfésvpvimsvliâniekatalitičeskogookisleniâco AT vasylyevma issledovanienanočasticzolotanatio2podložkemetodamirfésvpvimsvliâniekatalitičeskogookisleniâco AT makeevain issledovanienanočasticzolotanatio2podložkemetodamirfésvpvimsvliâniekatalitičeskogookisleniâco AT chenakinsp doslídžennânanočastinokzolotanatio2pídkladcímetodamirfesčpvímsvplivkatalítičnogookislennâco AT krusen doslídžennânanočastinokzolotanatio2pídkladcímetodamirfesčpvímsvplivkatalítičnogookislennâco AT vasylyevma doslídžennânanočastinokzolotanatio2pídkladcímetodamirfesčpvímsvplivkatalítičnogookislennâco AT makeevain doslídžennânanočastinokzolotanatio2pídkladcímetodamirfesčpvímsvplivkatalítičnogookislennâco |
| first_indexed |
2025-12-01T19:39:19Z |
| last_indexed |
2025-12-01T19:39:19Z |
| _version_ |
1850336045309100032 |
| fulltext |
597
СТРОЕНИЕ И СВОЙСТВА НАНОРАЗМЕРНЫХ
И МЕЗОСКОПИЧЕСКИХ МАТЕРИАЛОВ
PACS numbers: 68.35.Dv, 79.60.Bm, 82.65.+r, 82.80.Pv, 82.80.Rt
XPS/ToF-SIMS Characterization of TiO2 Supported
Au Nanoparticles: Effect of Catalytic CO Oxidation
S. P. Chenakin, N. Kruse*, M. A. Vasylyev, and I. N. Makeeva
G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine,
36 Academician Vernadsky Blvd.,
UA-03680 Kyyiv-142, Ukraine
*Université Libre de Bruxelles, Chimie-Physique des Matériaux,
CP 243,
1050 Bruxelles, Belgium
X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion
mass spectrometry (ToF-SIMS) are employed for a comparative study of the
surface composition and electronic structure of an Au/TiO2 catalyst in the as-
prepared state and after using it in the reaction of CO oxidation at room tem-
perature. As found, the reaction-induced changes in the morphology of Au
nanoparticles related to their agglomeration are accompanied by modifica-
tion of the electronic state of the catalyst via an enhanced electron transfer to
the gold atoms that shows up as an additional negative shift of the Au 4f
spectrum and its distortion. The catalytic reaction of CO oxidation results in
the loss of hydroxyl groups and accumulation on the support surface of vari-
ous carbon-containing species with the leading formation of carbonate and
bicarbonate groups, which increases with time on stream. The role of these
factors in deactivation of the catalyst is discussed.
За допомогою рентґенівської фотоелектронної спектроскопії (РФЕС) та
часопролітної вторинно-іонної мас-спектрометрії (ЧП-ВІМС) проведено
порівняльне дослідження складу поверхні й електронної структури ката-
лізатора Au/TiO2 у свіжоприготованому стані та після його використання
у реакції окиснення CO за кімнатної температури. Встановлено, що інду-
ковані каталітичною реакцією зміни у морфології наночастинок Au, які
спричинені їхньою аґломерацією, супроводжувалися модифікуванням
електронного стану каталізатора завдяки посиленому перенесенню елек-
тронів на атоми золота, що проявлялося як додатковий неґативний зсув
РФЕ-спектра Au 4f і його спотворення. Каталітична реакція окиснення
CO призводила до втрати гідроксильних груп та накопичення на поверхні
підкладки різних вуглецевмісних функціональних груп з переважним
Металлофиз. новейшие технол. / Metallofiz. Noveishie Tekhnol.
2014, т. 36, № 5, сс. 597—611
Оттиски доступны непосредственно от издателя
Фотокопирование разрешено только
в соответствии с лицензией
2014 ИМФ (Институт металлофизики
им. Г. В. Курдюмова НАН Украины)
Напечатано в Украине.
598 S. P. CHENAKIN, N. KRUSE, M. A. VASYLYEV, and I. N. MAKEEVA
формуванням карбонатів і бікарбонатів, яке посилювалося з часом реак-
ції. Обговорюється роль цих чинників у деактивації каталізатора.
С помощью рентгеновской фотоэлектронной спектроскопии (РФЭС) и
времяпролётной вторично-ионной масс-спектрометрии (ВП-ВИМС) про-
ведено сравнительное исследование состава поверхности и электронной
структуры катализатора Au/TiO2 в свежеприготовленном состоянии и по-
сле его использования в реакции окисления CO при комнатной темпера-
туре. Установлено, что индуцированные каталитической реакцией изме-
нения в морфологии наночастиц Au, вызванные их агломерацией, сопро-
вождались модификацией электронного состояния катализатора путём
усиленного переноса электронов на атомы золота, что проявлялось в виде
дополнительного отрицательного сдвига РФЭ-спектра Au 4f и его иска-
жения. Каталитическая реакция окисления CO приводила к потере гид-
роксильных групп и накоплению на поверхности подложки различных
углеродсодержащих функциональных групп с преимущественным фор-
мированием карбонатов и бикарбонатов, которое усиливалось с течением
времени реакции. Обсуждается роль этих факторов в деактивации ката-
лизатора.
Key words: Au/TiO2 catalyst, carbonates, CO oxidation, sintering, XPS, ToF-
SIMS.
(Received 25 December, 2013)
1. INTRODUCTION
Gold nanoclusters supported on various metal oxides have been exten-
sively studied, since they exhibit high catalytic activity for various
types of reactions of industrial interest. In particular, performance of
the most active titania-supported gold catalysts, Au/TiO2, in low-
temperature CO oxidation has received considerable attention that
stems from a variety of potential practical applications [1]. Numerous
experimental methods have been applied in the search for the active
site in the CO oxidation over supported gold catalysts, in determining
the influence of various parameters on the surface composition and
physicochemical state of the catalysts. In particular, X-ray photoelec-
tron spectroscopy (XPS) has been widely used, mainly because changes
in the chemical and electronic state of small metal clusters can be rou-
tinely monitored, using this technique.
Appreciation of the chemical and physical changes that can occur
during catalytic reaction is very important for understanding the per-
formance of catalysts and the causes of their deactivation. In this re-
gard, in situ XPS can especially be helpful due to its potential to iden-
tify mechanistically essential transient species under reaction condi-
tions [2]. On the other hand, post-reaction ex situ XPS characteriza-
tion of Au catalysts, or analysis of the ‘quenched’ states, proved to be
XPS/ToF-SIMS CHARACTERIZATION OF TiO2 SUPPORTED Au NANOPARTICLES 599
useful for ascertaining the reaction effect on the oxidation state and
electronic structure of gold nanoparticles. Park and Lee [3] were prob-
ably the first who compared the Au 4f XP spectra of calcined Au/Fe2O3
and Au/Al2O3 catalysts before and after reaction of CO oxidation at
313 K performed under the dry and wet conditions. As was established,
during the reaction in the dry condition the oxidized gold phases
(Au2O3 in Au/Fe2O3, Au(OH)3 and Au2O3 in Au/Al2O3), which coexisted
in the as-prepared catalysts along with Au0, were reduced almost com-
pletely to metallic Au, however after the reaction in the wet condition
about 40% of the oxidic gold remained. The gradual reduction of AuIII
species to metallic gold in an Au/Fe2O3 catalyst was also observed in
work [4], whereas in an Au/CeO2 catalyst the AuIII
ions were reduced
under CO oxidation reaction conditions to Au
species [5].
The data on the chemical and electronic state of gold nanoparticles
in different catalysts used in the CO oxidation as determined by the Au
4f binding energy are rather contradictory, although they clearly indi-
cate that formation and modification of the particles’ electronic state
strongly depend on the nature of support. For the Au/TiO2 system, in
which gold was in a metallic state, the reaction of CO oxidation was ob-
served to cause an appreciable shift of the Au0
4f peak to lower binding
energies as compared to the fresh catalyst [6, 7]. A similar negative
shift of the Au 4f and Au 4d lines was also reported for an Au/Al2O3
catalyst used in the CO oxidation [8]. Conversely, in works [7, 9] no
significant shift of the Au 4f line was detected for Au/Al2O3 and
Au/TiO2 catalysts after CO oxidation. Also, the position of the Au 4f
line was noted to remain practically unaffected in the used Au/ZrO2 [7,
10] and Au/MnOx [11] catalysts.
The aim of the present work was to systematically study the influ-
ence of reaction of CO oxidation at room temperature on the surface
composition, chemical state and electronic structure of two Au/TiO2
catalysts prepared by using different routes and, accordingly, to revis-
it the reported Au 4f core-level shifts. For this purpose, we employed
XPS and time-of-flight secondary ion mass spectrometry (ToF-SIMS)
which are known to be most suitable analytical techniques for charac-
terization of physical-chemical state of the surface of materials and
provide valuable complementary information.
2. EXPERIMENTAL
The Au/TiO2 catalyst was prepared by deposition—precipitation (DP)
technique. In the first series, titania was obtained by precipitation of
titanium oxalate Ti(C2O4)2 from titanium tetraisopropoxide
Ti(OC(CH3)3)4 using a 1.5-fold excess of oxalic acid dihydrate in ace-
tone. The dried precipitate was subsequently decomposed under (O2
10% Ar) ambient at 525C during 4 h to form TiO2. XRD confirmed
600 S. P. CHENAKIN, N. KRUSE, M. A. VASYLYEV, and I. N. MAKEEVA
titania to be present as anatase. Deposition—precipitation of Au on the
as-prepared TiO2 support occurred from an aqueous solution of
HAuCl4, the precipitating agent being urea H2NCONH2. The precipi-
tate was subsequently subjected to temperature-programmed oxida-
tion (3C/min, 10% O2 in Ar) followed by calcination at 300C for 2 h.
We denote this sample ‘DP1’.
In the second series, the Au/TiO2 catalyst ‘DP2’ was prepared in the
same way as DP1 but the oxalate route to TiO2 was modified, namely,
to test the possible catalytic influence of Mg, precipitation of Ti(C2O4)2
was performed at a reduced oxalic acid excess but with adding
MgNO36H2O to the solution in the amount which should provide dop-
ing of TiO2 with 0.04% wt. Mg. In both catalysts, DP1 and DP2, the
resulting Au loading was about 1.5% wt. According to TEM measure-
ments, the average diameter of Au nanoparticles was 3.0—3.9 nm. The
Brunauer—Emmet—Teller (BET) surface area of the Au/TiO2 catalysts
was 100 m
2/g. Note that the catalysts DP1 and DP2 were prepared in
a sodium-free environment.
Catalytic CO oxidation tests over Au/TiO2 catalysts were performed
at room temperature in a 2% CO 2% O2 (Ar balance) gas mixture,
with the flux being 50—100 ml/min. The duration of catalytic reaction
test was 60 min for DP1 and 151 min for DP2.
The surface physicochemical state of the catalysts was studied in a
combined XPS/ToF-SIMS instrument at a base pressure of 5.210
10
mbar. For XPS, a non-monochromatic MgK-radiation was used at an
operating power of 15 kV10 mA. Prior to analysis, the samples were
outgassed for 100 h in a preparation chamber at a base pressure of
610
10
mbar. Photoelectron core-level spectra were acquired with a
hemispherical analyzer in the constant-pass-energy mode at Ep 50 eV
with a 0.05 eV energy step. The overall resolution of the spectrometer
in this operating mode was 0.96 eV. Au 4f core-level spectra recorded
from a pure sputter-cleaned Au foil were used as a reference for bulk
metallic gold, and the spectrometer was calibrated against the Au 4f7/2
line set at 84.0 eV. To minimize X-ray damage of the catalyst [12], ac-
quisition of core-level spectra was started immediately after exposing
the sample to the operating X-ray source and the exposure was kept as
low as possible. After subtraction of the Shirley-type background, the
core-level spectra were decomposed into their components with mixed
Gaussian—Lorentzian lines by a non-linear least squares curve-fitting
procedure, using a public software package XPSPEAK 4.1. Deconvo-
luted peak areas and standard sensitivity factors [13] were used to
evaluate the surface composition of the samples. The carbon C 1s line
at 284.8 eV was taken as a reference for surface-charging corrections.
Static ToF-SIMS analysis of the catalyst was carried out with a puls-
ing (7.7 kHz) beam of 5 keV Ar
ions, using a reflection analyzer. Posi-
tive secondary ions were registered in the mass range up to m/z 400
XPS/ToF-SIMS CHARACTERIZATION OF TiO2 SUPPORTED Au NANOPARTICLES 601
with a mass resolution of m/m 1230 at 51 a.m.u.
XPS-SIMS measurements were carried out for the as-prepared cal-
cined Au/TiO2 catalyst (hereinafter referred to as ‘Fresh’) and for the
same catalyst after its using in reaction of CO oxidation (denoted
‘Used’). Both samples, the fresh and the used catalyst, were loaded on
the sample holder and analyzed sequentially, under the same experi-
mental conditions. The measurements were performed for two samples
of each catalyst (DP1 and DP2) and the data were reproducible.
3. RESULTS AND DISCUSSION
The sample DP1 demonstrated the highest catalytic activity and good
stability during the time of the test, with the CO to CO2 conversion be-
ing about 88%. The catalytic activity of DP2 was somewhat lower but
also rather stable; with increasing reaction time up to 151 min the CO
to CO2 conversion gradually decreased from 81 to 79% (Fig. 1).
Figure 2 shows characteristic XPS core-level spectra for an Au/TiO2
catalyst. According to the deconvolution results, the Ti 2p spectrum of
all catalysts is dominated by species with a binding energy (BE) of the
Ti 2p3/2 photoelectrons of 458.7 eV related to the Ti4
oxidation state.
Besides, a small contribution (3—4%) of reduced species Ti3
, which
appears at a BE of 2.5 eV below the Ti4
peak, is detected. The asym-
metrical O 1s spectra can be deconvoluted into three components. The
major component at BE 530 eV is obviously related to O
2
species,
while two minor components at 531.2 and 532.2 eV may be attribut-
ed to the presence of the surface hydroxyl groups OH
on TiO2 support
Fig. 1. CO-to-CO2 conversion at room temperature as a function of reaction
time over Au/TiO2 catalysts prepared by the deposition—precipitation routes
DP1 (curve 1) and DP2 (curve 2). See text for details of preparation.
602 S. P. CHENAKIN, N. KRUSE, M. A. VASYLYEV, and I. N. MAKEEVA
(and/or subsurface low-coordinated oxygen ions O
) and adsorbed wa-
ter molecules, respectively. Interpretation of the O 1s peak structure
for Au/TiO2 catalysts and TiO2 was recently discussed in detail else-
where [12]. The C 1s spectrum of the Au/TiO2 catalysts is dominated by
C—H/C—C species at BE 284.8 eV resulting from contamination of the
surface by hydrocarbons (adventitious carbon). The minor components
at 286.4 eV and 288.9 eV correspond to C—O and OC—O species, re-
spectively [14]. The position of the Ti 2p3/2, O 1s and C 1s peaks did not
change after using the catalysts in the reaction of CO oxidation.
Fitting the Au 4f spectra of the Au/TiO2 catalysts shows gold nano-
particles to be exclusively in a single metallic state. As can be seen in
Fig. 2, the Au 4f spectrum of fresh catalyst is shifted with respect to
the spectrum of Au foil toward lower binding energies. In fresh DP1
and DP2 catalysts, the Au 4f7/2 BE corrected for charging effect turned
Fig. 2. Ti 2p, O 1s, C 1s and Au 4f XPS core level spectra for an Au/TiO2 cata-
lyst. The presented Au 4f spectra correspond to pure Au foil (1), fresh (2) and
used Au/TiO2 catalyst (3). The binding energy scale is corrected for surface
charging effect. Chemical species derived from deconvolution of the spectra
are indicated.
XPS/ToF-SIMS CHARACTERIZATION OF TiO2 SUPPORTED Au NANOPARTICLES 603
out to be lower than that in bulk Au by 0.36 0.02 eV and 0.31 0.02
eV, respectively, implying that Au clusters are electronically different
from bulk Au. A similar negative shift of the Au 4f line was also ob-
served for World Gold Council standard Au/TiO2 catalyst and was dis-
cussed in detail in the previous work [12]. The negative shift of the Au
4f BE indicates a charge transfer from TiO2 to Au atoms making them
somewhat negatively charged [15]. The strong interaction of the inter-
facial Au atoms with reduced Ti3
species of the support, yielding Au
electronic state of gold atoms, is considered [16] to be crucial for acti-
vation of O2. According to ab initio calculations, the extra negative
charge on the anionic Au clusters as compared to the neutral clusters
can enhance not only O2 adsorption but also the strength of coadsorp-
tion of CO and O2, which leads to a lower reaction barrier in the oxida-
tion step and, consequently, to a higher catalytic activity [17].
The reaction of CO oxidation carried out over Au/TiO2 catalysts has
caused significant changes in the electronic state of Au nanoparticles,
both after short (1 h, DP1) and long (2.5 h, DP2) time on stream. In-
deed, as can be seen from Fig. 2 and 3, a, after catalytic reaction a fur-
ther decrease of the Au 4f BE in the used catalyst occurred as compared
with the fresh one, with the total negative shift with respect to the
bulk Au amounting to 0.45 0.05 eV for DP1 and 0.41 0.03 eV for
DP2. This observation is in agreement with other works [6, 7, 18] re-
porting a similar shift of the Au 4f spectrum toward lower binding en-
ergies for Au/TiO2 catalysts used in the CO oxidation reaction. The ad-
ditional negative shift of the Au 4f line in the used catalyst may result
a b c
Fig. 3. The shift of the Au 4f7/2 binding energy in Au/TiO2 catalyst with re-
spect to that in bulk Au (a), the ratio of intensities of the Au 4f7/2 and 4f5/2
spin orbit peaks (b) and the Au surface atomic concentration (c) derived from
XP spectra of DP1 and DP2 catalysts in the fresh state and after using in the
reaction of CO oxidation.
604 S. P. CHENAKIN, N. KRUSE, M. A. VASYLYEV, and I. N. MAKEEVA
from reaction-induced enhancement of charge transfer to the gold at-
oms (or stronger interaction of Au nanoparticles with the support)
and/or interaction of CO with Au nanoparticles giving rise to for-
mation of stable Au
—CO species [19].
Other parameters of the Au 4f spectrum also suffered transfor-
mation. Due to spin-orbit coupling effects, the 4f photoemission from
Au is in fact split between two peaks with different BE, Au 4f7/2 and Au
4f5/2, which correspond to final states with total angular momentum
J L S 7/2 and J L S 5/2, respectively. The relative intensi-
ties of the two peaks reflect the degeneracy of the final spin states and
are described by the ratio (2J 1)/(2J 1). In the fresh Au/TiO2 cata-
lysts, the Au 4f7/2-to-4f5/2 area ratio for the two spin-orbit peaks was
close to a theoretical value of 4/3 and was higher than that measured
for the bulk Au (1.26 0.02) (Fig. 3, b). After catalytic reaction the
4f7/2:4f5/2 peak area ratio noticeably decreased (by 13.5% for DP1 and
17.2% for DP2). This redistribution of intensity of the spin orbit
peaks in the used catalyst observed for the first time indicates the
change in the probability of transition to a degenerate spin state dur-
ing photoionization, which may be caused by reaction-induced modifi-
cation of the structural and electronic state of Au atoms.
In the fresh Au/TiO2 catalysts, the surface gold content evaluated
from XPS data was 0.42—0.44 at.%. Small variations in the concentra-
tion of Au on the surface of DP1 and DP2 at the same Au loading may
result from different dispersion of supported Au nanoparticles. After
catalytic reaction the surface Au concentration in the catalysts de-
creased to 0.3 at.%, i.e. by about 30% as compared with the fresh sam-
ple (Fig. 3, c). Respectively, the Au/Ti atomic ratio, which character-
izes dispersion of Au nanoparticles, decreased after catalytic test from
0.013 to 0.009. Such a noticeable ‘apparent’ decrease in the Au con-
tent, which was also observed in works [6, 10], indicates a decrease in
the Au coverage associated with agglomeration and 3D-growth of Au
nanoparticles occurring effectively during both short and long reac-
tion time. Note, however, that this reaction-induced agglomeration
process, which manifested itself in a 30% decrease of the Au coverage,
did not lead to an appreciable deactivation of the catalysts (Fig. 1).
The reaction-induced agglomeration, or sintering, of Au nanoparti-
cles was observed in a number of works. According to high-resolution
TEM measurements, the reaction of CO oxidation over the Au/TiO2
catalyst at 30C for 33 h [9] or at 200C for 6 h [18] caused the in-
crease in the average gold particle size by about 50% and 76%, respec-
tively. In Au/Al2O3 catalyst, after 7 h of CO oxidation at room temper-
ature, the mean width of the gold particles increased from 2.3 to
3.2 nm [8], mainly due to aggregation of smaller Au nanoparticles. Re-
cent in situ studies using scanning tunnel microscopy [20] revealed
that sintering of Au nanoparticles supported on TiO2(110) began im-
XPS/ToF-SIMS CHARACTERIZATION OF TiO2 SUPPORTED Au NANOPARTICLES 605
mediately upon the introduction of a CO/O2 1/1 gas mixture and pro-
ceeded via Ostwald ripening. After 2 h of CO oxidation at room tem-
perature, the number density of the Au particles decreased by 57%
and then decreased slowly thereafter. It was established that the acti-
vation energy of sintering for Au particles correlates with the activa-
tion energy of CO oxidation and is consistent with a reaction-induced
mechanism. Thus, we can conclude that the large amount of energy re-
leased during the exothermic CO oxidation reaction [8] occurring on
the surface of the Au/TiO2 catalyst could be enough to promote chang-
es in the morphology and electronic structure of gold nanoparticles
and local alterations in the support after several hours on stream.
The CO oxidation-induced decrease in the Au surface coverage ob-
served with XPS correlates with an appreciable decrease in the surface
content of Na and K impurities detected by SIMS (cf. Figs. 3, c and
4, a), which, due to its high sensitivity, allows detection of alkali ele-
ments at a very low level. This may be related to the interaction and
association of alkali atoms with Au nanoparticles forming active cen-
tres Au
Na
, Au
K
. Note that the relative emission of NaTiO
and
KTiO
secondary ions characterizing interaction of alkali atoms with
the TiO2 support somewhat increased after reaction (Fig. 4, b) in ac-
cordance with a decrease in the Au particle surface coverage.
Figure 5 compares the atomic concentration of different oxygen
species, O
2, OH
and H2O, derived from the O 1s spectra (Fig. 2) on the
surface of the fresh and used DP1 and DP2 catalysts. In DP1, the con-
tent of the lattice oxygen O
2
in the support slightly increased after re-
action (by 2.1%), whereas in DP2 it decreased by 3.2% (Fig. 5, a).
Accordingly, the O2/Ti atomic ratio changed from 2.03 0.08 to
a b c
Fig. 4. The emission of Na
, K
(a), NaTiO
, KTiO
(b), TiOH
and C
secondary
ions normalized by emission of Ti
ions from fresh and used DP2 catalyst.
606 S. P. CHENAKIN, N. KRUSE, M. A. VASYLYEV, and I. N. MAKEEVA
2.11 0.05 in DP1 and from 2.08 0.02 to 2.04 0.03 in DP2. Con-
sistent alterations occurred also in the Ti 2p spectra (Fig. 2). In DP1,
the fraction of reduced Ti3
species decreased as a result of the catalytic
reaction from 4.4 to 3.8%, whereas in DP2 the Ti3
fraction increased
from 4.5 to 5.3%. Such variations of the O
2/Ti atomic ratio and the
Ti3
fraction in DP1 and DP2 imply that, depending on duration of the
test, the catalytic reaction can cause either some additional oxidation
of the support or, on the contrary, some reduction of TiO2 due to par-
ticipation of the lattice oxygen in the reaction of CO oxidation, i.e. the
processes of reduction-oxidation of the support during the course of
reaction appear to be alternating.
Emission of characteristic molecular secondary ions such as TiOH
,
2TiOH , TiO2H
, ,OHTi 32
OH
and H2O
observed by SIMS and occur-
rence of the O 1s components at 531 eV and 532 eV in XPS (Fig. 2)
for the Au/TiO2 catalyst indicate the presence of hydroxyl groups and
adsorbed water on the support surface. The hydroxylation and hydra-
tion of the catalyst surface may originate from using the oxalic acid
dihydrate C2O2(OH)22H2O for precipitation of titanium oxalate or/and
from adsorption of water and formation of hydroxyl groups on the sur-
face of the calcined catalysts in atmosphere.
As can be seen in Figure 5, b, the content of OH
groups in fresh cat-
alyst DP1 is larger than in DP2. This is consistent with a smaller
O2/Ti4
atomic ratio in DP1 as mentioned above and may indicate a
partial substitution of oxygen atoms in the lattice of TiO2 by hydroxyl
groups. The higher level of the initial surface hydroxylation in fresh
DP1 may be favourable for attaining a higher catalytic activity as
compared with DP2 (Fig. 1). Indeed, as has recently been shown [21],
a b c
Fig. 5. The concentration of O
2
(a), OH
(b) and H2O species on the surface of
fresh and used DP1 and DP2 Au/TiO2 catalysts derived from the O 1s XP
spectra.
XPS/ToF-SIMS CHARACTERIZATION OF TiO2 SUPPORTED Au NANOPARTICLES 607
the activity of supported Au catalysts in CO oxidation increases with
increasing the extent of support hydroxylation. The important role of
surface hydroxyls in the enhancement of activity of the Au/TiO2 cata-
lyst was assigned [22] to a significant charge transfer at the interface
of the Au nanoparticle and TiO2 that resulted in reducing the CO oxida-
tion reaction barrier. The hydroxyl group adsorbed on the support and
bonded to an Au cation or to a highly coordinatively unsaturated me-
tallic Au atom at the periphery of Au nanoparticle was also considered
[1, 23, 24] to be a part of the active site involved in CO oxidation.
The surface content of the hydroxyl-related component OH
in DP1
and DP2 catalysts derived from the O 1s spectra decreased after reac-
tion by about 17% and 12%, respectively (Fig. 5, b). The XPS data are
supported by SIMS measurements, which display a noticeable decrease
in the emission of OH
and TiOH
ions after using the catalyst in the
reaction (Fig. 4, c). These results are in accordance with in situ Diffuse
Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) ob-
servations of the loss of OH groups from the support during the reac-
tion of CO oxidation over Au/TiO2 catalyst [18, 25]. As distinct from
the hydroxyls, the amount of adsorbed water estimated from the O 1s
spectra did not change much after the reaction (Fig. 5, c).
The loss of hydroxyl groups in the used catalysts is consistent with a
mechanism [23, 24], which is based on the active site model mentioned
above. According to this mechanism, CO adsorbed on metallic Au is in-
serted into an Au—OH bond to form a hydroxycarbonyl (CO OH
OCOH
). The hydroxycarbonyl is oxidized to a bicarbonate
3
HCO ,
which is then decomposed into Au—OH and CO2. In addition to decom-
posing to CO2, the bicarbonate intermediate also reacts by a parallel
pathway of deprotonation with substrate hydroxyl to form a carbonate
(
3HCO OH
2
3CO H2O). The carbonate on the catalyst surface can
also be formed by the reaction of hydroxycarbonyl with surface hy-
droxyl groups (OCOH
OH
2
3CO H2O) [19], whereas the reaction
of adsorbed CO with bridging hydroxyl groups can fuel formation of
relatively inactive formate species HCOO
[18]. Thus, the hydroxyls
participate in the reaction and are consumed accordingly to produce
formates/carbonates, i.e. the support is depleted of OH groups during
the reaction. The formation of various carbon-containing species on
the catalyst surface was evidenced by both XPS and SIMS measure-
ments as described below.
In fresh catalysts DP1 and DP2, the respective surface concentra-
tions of carbon-containing species C—C, C—O and O—CO derived from
C 1s spectra (Fig. 2) were about the same, and after the reaction of CO
oxidation, they all increased. Accordingly, an increase in the total sur-
face carbon content after using the catalysts in the reaction was de-
tected in both XPS (as represented by the full C 1s peak area in Fig. 6)
and SIMS (as represented by the C
/Ti
ion peaks ratio in Fig. 4, c). The
608 S. P. CHENAKIN, N. KRUSE, M. A. VASYLYEV, and I. N. MAKEEVA
relative change of the surface concentration of carbon-containing spe-
cies induced by the CO oxidation, (Cused Cfresh)/Cfresh, or effect of the
reaction, is plotted in Fig. 6 for DP1 and DP2. As can be seen, the reac-
tion-induced additional formation of various carbon species in both
catalysts is enhanced in the series C—C C—O O—CO, with the largest
augmentation being observed for the carboxylate group O—CO (by
18% for DP1 and 58% for DP2). It is noteworthy that with increas-
ing time on stream the concentrations of all the carbon species and the
total carbon content appreciably increase (cf. reaction effects for DP1
and DP2 in Fig. 6).
Furthermore, emission of molecular ions TiC
, TiCO
, TiCOH
,
,TiCO2
TiCO2H
, ,TiCO3
and TiCO3H
observed from fresh catalysts
indicates the presence already in the initial state of various functional
groups such as carbonyl (—CO), hydroxy (—C—OH) or formyl (H—CO),
carboxylate (O—CO), hydroxycarbonyl (OC—OH) or formate (O—
CHO), carbonate (OO—CO), and bicarbonate (OO—C—OH). Apparent-
ly, these species were formed on the support surface as a result of in-
teraction of atmospheric CO2 and moisture with TiO2 [19, 26] which is
corroborated by nearly the same intensity of emission of these ions
from the fresh Au/TiO2 catalyst and pure TiO2 (Fig. 7). Using the cata-
lyst in the reaction of CO oxidation gave rise to a noticeable increase in
the ion emission of all the carbon-containing species (Fig. 7) that evi-
dences their accumulation on the support surface. The enhanced emis-
sion of
2TiCO and TiCO2H
ions from the used catalyst (Fig. 7) may in-
dicate a higher population of carboxylate and hydroxycarbonyl/forma-
te moieties on the catalyst surface as compared to other species. On the
other hand, the largest relative change of the emission after the cata-
lytic reaction was observed for
3TiCO and TiCO3H
ions (98% and
136%, respectively), which implies the preferential formation of
carbonate and bicarbonate groups. These results are consistent with
Fig. 6. The relative change of the surface concentration of various carbon-
containing species caused by the reaction of CO oxidation, (Cused Cfresh)/Cfresh,
derived from the C 1s XP spectra of DP1 and DP2 catalysts.
XPS/ToF-SIMS CHARACTERIZATION OF TiO2 SUPPORTED Au NANOPARTICLES 609
XPS data (Fig. 6) and agree with DRIFTS measurements showing for-
mation and build-up of carbonates, carboxylates, hydroxycarbon-
yls/formates, and bicarbonates on Au/TiO2 during CO oxidation [6, 9,
18, 19, 25]. The point whether the carbonates reside on the gold [19],
on the support [9, 18, 27], on the Au—TiO2 border [6], or on both the Au
and the support [28] is still in debate. Our SIMS data demonstrating an
intense emission of molecular ions
2TiCO , TiCO2H
,
3TiCO , and Ti-
CO3H
from the used catalyst suggest that these carbonate-like species
are not intermediates in the reaction mechanism but strongly bound to
the catalyst and most likely reside on the titania support.
The loss of activity with time on stream is a crucial factor that could
hamper the industrial development of gold-based catalysts. Deactiva-
tion of the catalyst was suggested to occur due to reduction of oxidized
gold species (which were claimed to be the most active sites for CO oxi-
dation) to metallic gold [3, 4], sintering of Au nanoparticles (irreversi-
ble) [6, 15, 18], dehydroxylation of the support during the reaction
(assuming that OH groups were involved in the oxidation pathway)
[23, 24], and accumulation of carbonate-like species (carbonate
2
3CO ,
formate
2HCO and carboxylate O—CO groups) at the active sites [6, 9,
19, 25, 27, 28]. In our work, some sintering, dehydroxylation and
build-up of surface carbonate-like species occurred in the catalyst
(DP1) already after 1 h on stream, although no deactivation was ob-
served (Fig. 1, curve 1). On the other hand, the catalyst DP2, which is
characterized by a significantly larger extent of the surface carboniza-
tion after 2.5 h on stream (Fig. 6) at nearly the same levels of sintering
a b
Fig. 7. The emission of TiC
, TiCO
,
2TiCO ,
3TiCO (a) and TiCOH
, TiCO2H
,
TiCO3H
(b) secondary ions normalized by emission of Ti
ions from fresh and
used Au/TiO2 DP2 catalyst and from TiO2.
610 S. P. CHENAKIN, N. KRUSE, M. A. VASYLYEV, and I. N. MAKEEVA
(Fig. 3, c) and dehydroxylation (Fig. 5, b), did demonstrate some de-
cline of activity (Fig. 1). This indicates the decisive role in deactivation
of carbonate-like species, which gradually accumulate during the reac-
tion, covering the surface and acting as catalyst poison. A partial re-
generation of activity may occur via reaction of carbonates with ad-
sorbed H2O and/or of formates with activated oxygen to form thermal-
ly less stable bicarbonates with their subsequent decomposition (—CO3
H2O —CO3H OH,
2HCO O
*—CO3H, —CO3H CO2 OH) [24, 25].
4. CONCLUSIONS
Using the Au/TiO2 catalyst in the reaction of CO oxidation at room
temperature for 1—2.5 h on stream gives rise to a number of changes in
the morphological and electronic state of Au nanoparticles and chemi-
cal composition of the support. As has been observed, the catalytic re-
action causes some agglomeration, or sintering, of Au nanoparticles
and enhances electron transfer to the gold atoms making them more
negatively charged. The reaction-induced modification of the struc-
tural and electronic state of Au atoms results in the redistribution of
intensity of the Au 4f spin orbit peaks in the used catalyst. The reac-
tion of CO oxidation is accompanied by the loss of hydroxyl groups and
the noticeable accumulation of various carbon-containing species on
the support surface with the preferential formation of carbonate and
bicarbonate groups. These moieties appear to block the active sites and
thus play a key role in the gradual deactivation of the catalyst.
A partial financial support of this work from the National Academy
of Sciences of Ukraine in the framework of the Fundamental Research
Program ‘Fundamental Problems of Nanostructural Systems, Nano-
materials, Nanotechnologies 2010—2014’ is greatly acknowledged.
REFERENCES
1. J. C. Bond and D. T. Thompson, Gold Bull., 33: 41 (2000).
2. E. A. Willneff, S. Braun, D. Rosenthal, H. Bluhm, M. Hävecker, E. Kleimenov,
A. Knop-Gericke, R. Schlögl, and S. L. M. Schroeder, J. Am. Chem. Soc., 128:
12052 (2006).
3. E. D. Park and J. S. Lee, J. Catal., 186: 1 (1999).
4. A. M. Visco, F. Neri, G. Neri, A. Donato, C. Milone, and S. Galvagno,
Phys. Chem. Chem. Phys., 1: 2869 (1999).
5. A. M. Venezia, G. Pantaleo, A. Longo, G. Di Carlo, M. P. Casaletto, F. L. Liotta,
and G. Deganello, J. Phys. Chem. B, 109: 2821 (2005).
6. P. Konova, A. Naydenov, Cv. Venkov, D. Mehandjiev, D. Andreeva, and
T. Tabakova, J. Mol. Catal. A: Chem., 213: 235 (2004).
7. S. Arrii, F. Morfin, A. J. Renouprez, and J. L. Rousset, J. Am. Chem. Soc., 126:
1199 (2004).
XPS/ToF-SIMS CHARACTERIZATION OF TiO2 SUPPORTED Au NANOPARTICLES 611
8. G. M. Veith, A. R. Lupini, S. J. Pennycook, G. W. Ownby, and N. J. Dudney,
J. Catal., 231: 151 (2005).
9. Y. Denkwitz, Z. Zhao, U. Hörmann, U. Kaiser, V. Plzak, and R. J. Behm,
J. Catal., 251: 363 (2007).
10. P. Konova, A. Naydenov, T. Tabakova, and D. Mehandjiev, Catal. Commun., 5:
537 (2004).
11. L.-C. Wang, Q. Liu, X.-S. Huang, Y.-M. Liu, Y. Cao, and K.-N. Fan,
Appl. Catal. B, 88: 204 (2009).
12. N. Kruse and S. P. Chenakin, Appl. Catal. A: Gen., 391: 367 (2011).
13. Handbook of X-Ray Photoelectron Spectroscopy (Eds. C. D. Wagner,
W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg) (Eden Prairie:
Perkin-Elmer Corp.: 1979).
14. G. P. Lуpez, D. G. Castner, and B. D. Ratner, Surf. Interface Anal., 17: 267
(1991).
15. D. W. Goodman, Catal. Lett., 99: 1 (2005).
16. A. Vijay, G. Mills, and H. Metiu, J. Chem. Phys., 118: 6536 (2003).
17. Y. Gao, N. Shao, Y. Pei, Z. Chen, and X. C. Zeng, ACS Nano, 5: 7818 (2011).
18. K. Y. Ho and K. L. Yeung, J. Catal., 242: 131 (2006).
19. M. C. Raphulu, J. McPherson, E. van der Lingen, J. A. Anderson, and
M. S. Scurrell, Gold Bull., 43: 334 (2010).
20. F. Yang, M. S. Chen, and D. W. Goodman, J. Phys. Chem. C, 113: 254 (2009).
21. C. J. Karwacki, P. Ganesh, P. R. C. Kent, W. O. Gordon, G. W. Peterson,
J. J. Niu, and Y. Gogotsi, J. Mater. Chem. A, 1: 6051 (2013).
22. P. Ganesh, P. R. C. Kent, and G. M. Veith, J. Phys. Chem. Lett., 2: 2918 (2011).
23. C. K. Costello, M. C. Kung, H.-S. Oh, Y. Wang, and H. H. Kung,
Appl. Catal. A: Gen., 232: 159 (2002).
24. M. C. Kung, R. J. Davis, and H. H. Kung, J. Phys. Chem. C, 111: 11767 (2007).
25. B. Schumacher, Y. Denkwitz, V. Plzak, M. Kinne, and R. J. Behm, J. Catal.,
224: 449 (2004).
26. J. C. Clark, S. Dai, and S. H. Overbury, Catal. Today, 126: 135 (2007).
27. J. Saavedra, C. Powell, B. Panthi, C. J. Pursell, and B. D. Chandler, J. Catal.,
307: 37 (2013).
28. B. Schumacher, V. Plzak, M. Kinne, and R. J. Behm, Catal. Lett., 89: 109
(2003).
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles true
/AutoRotatePages /None
/Binding /Left
/CalGrayProfile (Dot Gain 20%)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Error
/CompatibilityLevel 1.4
/CompressObjects /Tags
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.0000
/ColorConversionStrategy /CMYK
/DoThumbnails false
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams false
/MaxSubsetPct 100
/Optimize true
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo true
/PreserveFlatness true
/PreserveHalftoneInfo false
/PreserveOPIComments true
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Apply
/UCRandBGInfo /Preserve
/UsePrologue false
/ColorSettingsFile ()
/AlwaysEmbed [ true
]
/NeverEmbed [ true
]
/AntiAliasColorImages false
/CropColorImages true
/ColorImageMinResolution 300
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages true
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 300
/ColorImageDepth -1
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.50000
/EncodeColorImages true
/ColorImageFilter /DCTEncode
/AutoFilterColorImages true
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/ColorImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasGrayImages false
/CropGrayImages true
/GrayImageMinResolution 300
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages true
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 300
/GrayImageDepth -1
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.50000
/EncodeGrayImages true
/GrayImageFilter /DCTEncode
/AutoFilterGrayImages true
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/GrayImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasMonoImages false
/CropMonoImages true
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages true
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.50000
/EncodeMonoImages true
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects false
/CheckCompliance [
/None
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile ()
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName ()
/PDFXTrapped /False
/CreateJDFFile false
/Description <<
/ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
/BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
/CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
/ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
/GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
/HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
/HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
/HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
/ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
/JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
/LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
/LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
/POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
/RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
/RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
/SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
/SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
/TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
/UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
/ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
>>
/Namespace [
(Adobe)
(Common)
(1.0)
]
/OtherNamespaces [
<<
/AsReaderSpreads false
/CropImagesToFrames true
/ErrorControl /WarnAndContinue
/FlattenerIgnoreSpreadOverrides false
/IncludeGuidesGrids false
/IncludeNonPrinting false
/IncludeSlug false
/Namespace [
(Adobe)
(InDesign)
(4.0)
]
/OmitPlacedBitmaps false
/OmitPlacedEPS false
/OmitPlacedPDF false
/SimulateOverprint /Legacy
>>
<<
/AddBleedMarks false
/AddColorBars false
/AddCropMarks false
/AddPageInfo false
/AddRegMarks false
/ConvertColors /ConvertToCMYK
/DestinationProfileName ()
/DestinationProfileSelector /DocumentCMYK
/Downsample16BitImages true
/FlattenerPreset <<
/PresetSelector /MediumResolution
>>
/FormElements false
/GenerateStructure false
/IncludeBookmarks false
/IncludeHyperlinks false
/IncludeInteractive false
/IncludeLayers false
/IncludeProfiles false
/MultimediaHandling /UseObjectSettings
/Namespace [
(Adobe)
(CreativeSuite)
(2.0)
]
/PDFXOutputIntentProfileSelector /DocumentCMYK
/PreserveEditing true
/UntaggedCMYKHandling /LeaveUntagged
/UntaggedRGBHandling /UseDocumentProfile
/UseDocumentBleed false
>>
]
>> setdistillerparams
<<
/HWResolution [2400 2400]
/PageSize [612.000 792.000]
>> setpagedevice
|