Final distribution density of material fragment sizes at slow fragmentation process
The process of slow material fragmentation is studied when the diffusion approximation is applicable. Final distribution density of fragment sizes is calculated in the case of scale-homogeneity of subdivision mechanism.
Gespeichert in:
| Datum: | 2012 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Single Crystal Institute
2012
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/107097 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Final distribution density of material fragment sizes at slow fragmentation process / R.Ye. Brodskii, Yu.P. Virchenko // Вопросы атомной науки и техники. — 2012. — № 1. — С. 206-208. — Бібліогр.: 3 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-107097 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1070972025-02-23T18:03:51Z Final distribution density of material fragment sizes at slow fragmentation process Финальная плотность распределения размеров фрагментов материала в условиях медленности фрагментации Фiнальна густина розподiлу розмiрiв фрагментiв матерiалу в умовах повiльностi фрагментацiї Brodskii, R.Ye. Virchenko, Yu.P. Section D. Theory of Irreversible Processes The process of slow material fragmentation is studied when the diffusion approximation is applicable. Final distribution density of fragment sizes is calculated in the case of scale-homogeneity of subdivision mechanism. Рассмотрен процесс медленной фрагментации материала в условиях, когда применимо диффузионное приближение. Вычислена финальная плотность распределения размеров фрагментов в случае масштабной однородности механизма дробления. Розглянуто процес повільної фрагментації матеріалу в умовах, коли можна застосувати дiфузiйне наближення. Обчислена фінальна густина розподілу розмiрiв фрагментiв у випадку масштабної однорiдностi механiзму дроблення. 2012 Article Final distribution density of material fragment sizes at slow fragmentation process / R.Ye. Brodskii, Yu.P. Virchenko // Вопросы атомной науки и техники. — 2012. — № 1. — С. 206-208. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 05.20.Dd https://nasplib.isofts.kiev.ua/handle/123456789/107097 en Вопросы атомной науки и техники application/pdf Single Crystal Institute |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Section D. Theory of Irreversible Processes Section D. Theory of Irreversible Processes |
| spellingShingle |
Section D. Theory of Irreversible Processes Section D. Theory of Irreversible Processes Brodskii, R.Ye. Virchenko, Yu.P. Final distribution density of material fragment sizes at slow fragmentation process Вопросы атомной науки и техники |
| description |
The process of slow material fragmentation is studied when the diffusion approximation is applicable. Final distribution density of fragment sizes is calculated in the case of scale-homogeneity of subdivision mechanism. |
| format |
Article |
| author |
Brodskii, R.Ye. Virchenko, Yu.P. |
| author_facet |
Brodskii, R.Ye. Virchenko, Yu.P. |
| author_sort |
Brodskii, R.Ye. |
| title |
Final distribution density of material fragment sizes at slow fragmentation process |
| title_short |
Final distribution density of material fragment sizes at slow fragmentation process |
| title_full |
Final distribution density of material fragment sizes at slow fragmentation process |
| title_fullStr |
Final distribution density of material fragment sizes at slow fragmentation process |
| title_full_unstemmed |
Final distribution density of material fragment sizes at slow fragmentation process |
| title_sort |
final distribution density of material fragment sizes at slow fragmentation process |
| publisher |
Single Crystal Institute |
| publishDate |
2012 |
| topic_facet |
Section D. Theory of Irreversible Processes |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/107097 |
| citation_txt |
Final distribution density of material fragment sizes at slow fragmentation process / R.Ye. Brodskii, Yu.P. Virchenko // Вопросы атомной науки и техники. — 2012. — № 1. — С. 206-208. — Бібліогр.: 3 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT brodskiirye finaldistributiondensityofmaterialfragmentsizesatslowfragmentationprocess AT virchenkoyup finaldistributiondensityofmaterialfragmentsizesatslowfragmentationprocess AT brodskiirye finalʹnaâplotnostʹraspredeleniârazmerovfragmentovmaterialavusloviâhmedlennostifragmentacii AT virchenkoyup finalʹnaâplotnostʹraspredeleniârazmerovfragmentovmaterialavusloviâhmedlennostifragmentacii AT brodskiirye finalʹnagustinarozpodilurozmirivfragmentivmaterialuvumovahpovilʹnostifragmentacií AT virchenkoyup finalʹnagustinarozpodilurozmirivfragmentivmaterialuvumovahpovilʹnostifragmentacií |
| first_indexed |
2025-11-24T06:07:41Z |
| last_indexed |
2025-11-24T06:07:41Z |
| _version_ |
1849650798712061952 |
| fulltext |
FINAL DISTRIBUTION DENSITY
OF MATERIAL FRAGMENT SIZES
AT SLOW FRAGMENTATION PROCESS
R.Ye. Brodskii 1 and Yu.P. Virchenko 2∗
1Single Crystal Institute, 61000, Kharkov, Ukraine
2Belgorod State University, 308015, Belgorod, Russia
(Received November 2, 2011)
The process of slow material fragmentation is studied when the diffusion approximation is applicable. Final distrib-
ution density of fragment sizes is calculated in the case of scale-homogeneity of subdivision mechanism.
PACS: 05.20.Dd
1. INTRODUCTION
A lot of works are dedicated to theoretical researching
of material fragmentation process from the statistical
physics viewpoint (see, for example, [1–3]). Impor-
tance of such investigations is stipulated by its prac-
tical necessity. The complexity of the study of such
physical process on the basis of statistical physics is
connected with serious difficulties if microscopic rep-
resentations are used. In such conditions, main inves-
tigation approach to study fragmentation dynamics
consists in the construction of the most general prob-
abilistic fragmentation models which are phenomeno-
logically reasonable . After that it is necessary to
study the most general properties of such models.
2. PROBLEM FORMULATION
Let N(r, t) is the number of fragments which have
sizes being not larger than r at the time moment t
and g(r, t) = ∂N(r, t)/∂r is the corresponding distri-
bution density. We use further the following kinetic
equation that describes the temporal evolution of the
density
ġ(r, t) =
∞∫
r
K(r, r′; t)g(r′, t)dr′ − μ(r, t)g(r, t) . (1)
It has been formulated in [3]. Here K(r, r′; t) is a non-
negative function. From the physical point of view, it
is the average number of fragments which are formed
during the small time interval (t, t+dt), μ(r, t) is the
average number of fragments having the size r which
are disintegrated during the same temporal interval.
It is supposed that the conservation of total volume
of all fragments takes place that is formulated in the
form
∫ ∞
0 g(r, t)r3dr = const [2]. It is assumed that
the energy expended on the breaking of intermolec-
ular bonds during the time interval dt, which is pro-
portional to the value
∫ ∞
0 g(r, t)r2dr of total surface
area of all fragments [2], is also constant. At the slow-
ness condition of fragmentation process, the diffusion
equation is applicable [3]. Using it and also using
conditions of volume conservation and the constancy
of the expending energy intensity, the equation (1) is
transformed to the following [3]
ġ(r, t) = γ(r, t)g(r, t) +
2
3
∂
∂r
[rγ(r, t)g(r, t)]+
+
1
6
∂2
∂r2
[r2γ(r, t)g(r, t)] ,
where γ(r, s) > 0 is the intensity of the fragment for-
mation.
At the assumption that the fragment subdivision
is steady-state stable at all scales after sufficiently
long evolution when γ(r, t) ∼ c(r)γ(t), we have
∂g
∂s
= c(r)g(r, s) +
2
3
∂
∂r
[rc(r)g(r, s)]+
+
1
6
∂2
∂r2
[r2c(r)g(r, s)] , (2)
where we introduce the effective time scale with ele-
mentary interval ds = γ(t)dt. Taking into account
that g(r, s) is concentrated near the point r = 0,
g(r, s) ∼ N(s)δ(r) (N(s) is the total number of frag-
ments) when the time evolution is sufficiently large,
it is important to investigate the function g(r, s) by
such a way that, firstly, to find its structure near
this point. In this situation there are two qualita-
tively different cases connected with the behavior of
the function c(r): the scale invariant (Kolmogorov)
case when c(0) > 0 and the scale homogeneous case
when c(r) ∝ rβ , β > 0. In this work we calculate
the final distribution density in the last case. In such
∗Corresponding author E-mail address: virch@bsu.edu.ru
206 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, N 1.
Series: Nuclear Physics Investigations (57), p. 206-208.
a situation, the equation (2) is transformed to the
following
∂g
∂s
= rβg(r, s) +
2
3
∂
∂r
[rβ+1g(r, s)]+
+
1
6
∂2
∂r2
[r2+βg(r, s)] , (3)
where the transformation to dimensionless variable
r ⇒ r/r∗, r∗ = c
−1/β
0 is done in the density g(r, s).
It is necessary to solve the equation (3) on the
semi-axis (0,∞) taking into account the boundary
conditions rg(r, s) → 0 at r → 0 and r4g(r, s) → 0
at r → ∞ which follow from the integrability of den-
sity g(r, s) near the zero point and the finiteness of
integral
∫ ∞
0 r3g(r, s)dr < ∞.
3. FINAL DISTRIBUTION DENSITY
For solving the equation (3), we make the following
transformations. At first, we introduce a new func-
tion h(r, s) = rβ+3g(r, s) and after that we pass to a
new independent variable x = r−β/2. In a result, the
equation (3) in terms of new values takes the form
∂h
∂s
=
β2
24
∂2h
∂x2
+
β
6x
[(1 + β/2)/2 − 1]
∂h
∂x
. (4)
Here, we essentially simplify in comparison with the
work [3] the procedure of the solution building and
the calculations connected with it (in particular, it
permits to remove the inaccuracy that takes place in
the cited work). The initial boundary problem on the
axis x ∈ (0,∞) for the equation obtained is necessary
to solve at the conditions xβ+2h(x, s) → 0 at x → 0
and xβ−1h(x, s) → 0 at x → ∞. Further, in this work
we analyze only the case β = 2, when the equation
(4) has the most simple form
∂h
∂s
=
1
6
∂2h
∂x2
. (5)
The initial boundary problem on the semi-axis is
solved on the basis of the Laplace transformation on
the time s. Its solution can be represented by the
formula
h(x, s) =
∞∫
0
G(x, x′; s)h(x′, 0)dx′ , (6)
where the Green function G(x, x′; s) has the following
form
G(x, x′; s) =
√
3
2πs
×
×
[
exp
(
−3(x − x′)2
2s
)
− exp
(
−3(x + x′)2
2s
)]
.
(7)
From (6) one may obtain the following formula
for the function g(r, s)
g(r, s) =
=
∞∫
0
g(r′, 0) ·
[
r∗
r′
]2
·
[
r′
r
]5
· G
(r∗
r
,
r∗
r′
; s
)
d
(
r′
r∗
)
.
The expression g(r, 0) = δ(r − r0) corresponds to
very important special case, when the fragmentation
process starts from one fragment having the size r0.
In this case
g(r, s) =
[
r2
∗r
3
0
r5
]
· G
(
r∗
r
,
r∗
r0
; s
)
.
To obtain the asymptotic expression for this distrib-
ution density at s → ∞, i.e., in probabilistic termi-
nology, the final density, it is sufficient to take into
account that, after the long evolution, the density
g(r, s) should be concentrated in the region of small
values r � r0. Assuming also that it takes place by
such a way that r2∗ � rr0 (the asymptotic formula
obtained in this case is nonuniform on r at r → 0,
i.e. it is not right at very small r), one may find that
g(r, s) =
C(s)
r6
exp
(
−α(s)
r2
)
, (8)
where α(s) = 3r2
∗/2s, C(s) = 6r4
∗r
2
0(3/2πs3)1/2.
Then the average fragment number N(s), corre-
spondingly normalized to unit probability distribu-
tion density f(r, s) = g(r, s)/N(s) and the average
fragment size 〈r̃〉 are determined by formulas
N(s) =
3
8
√
π
C(s)
α5/2(s)
,
f(r, s) =
8
3
√
π
α5/2(s)
r6
exp
(
−α(s)
r2
)
,
〈r̃〉 =
3
4
√
π
α1/2(s) .
The relative squared variation of the fragment size is
constant, since
Dr̃ =
2
3
(
1 − 8
3
√
π
)
α(s) .
4. CONCLUSIONS
The research made in the present work permits essen-
tially simplify the calculation of the final distribution
density of fragment sizes when the scale homogeneous
mechanism of fragment subdivision takes place. We
find general equation (4) defining the final distribu-
tion density at any homogeneity parameter β which
is reduced to the Schrödinger equation with the imag-
inary time and with the potential being proportional
to ∼ x−2. We illustrate the calculation of the fi-
nal distribution density explicitly on the case when
β = 2. It is remarkable that the distribution density
in the case under consideration is decreased by the
power way when the size r tends to infinity ∼ r−6.
Besides, it is very important that the values N(s), 〈r̃〉
vary essentially different from those which take place
in the Kolmogorov case, N(s) ∼ s, 〈r̃〉 ∼ s−1/2.
207
References
1. A.N. Kolmogorov. On logarithmically normal
distribution law of particle sizes at division
process // DAN SSSR. 1941, v. 31, p. 99-101.
2. R.Z. Sagdeev, A.V. Tur, V.V. Yanovskii. Forma-
tion and universal properties of the size distribu-
tion in the fragmentation theory // DAN SSSR.
1987, v. 294, p. 1105-1110.
3. R.Ye. Brodskii, Yu.P. Virchenko. Final probabil-
ity distribution of random sizes at the self-similar
division mechanism // Scientific Bulletin of Bel-
gorod State University. Mathematics & Physics.
2008, v. 13 (53), p. 23-32.
��������� ��
� �
� �����
�
�
��� ����
� � �����
�
�
��
����� � ��� ���� �
��
�� �
� �����
�
����
���� �����
��
��� �
���� �
���������
������ ���
� �� ������ ����� �������
� � ��
������ �����
���� ��� �������� ��
���
��� ��� �����
� � �� �
� ��
�� ���� ���
����
� �� �������� ������ ��� � �
���� ���
!��� �� �� ���� ���� ���� ���� ����
� ���
�������� ���
��� � �� ���� � ������ �����
�
��
��
����� � �� ��� � ����� �
� �����
�
����
���� ������
��
��� ������ �
����
� ���
�����
��"
� �# ������ ���"# �����"�
� � ������� ��
� ��� � ����������� �"���"� �
��
��� �� $����
� � �" �
� � ����� � ���
��"
� ����"�"� ������ �"� � ��
���� ���!��� �# �� �
�"� ���" ���� "��� ����
� ��
%&'
|