Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results

Influence of combined hydrogen plasma exposures on tungsten behavior was studied in QSPA Kh-50 facility and steady-state ion beam system FALCON. Pulsed plasma loads (0.45 MJ/m²) were below the tungsten melting threshold. The influence of addition steady-state heat flux (of 0.43 MW/m² during 900 s) o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Makhlaj, V.A., Aksenov, N.N., Byrka, O.V., Garkusha, I.E., Bizyukov, A.A., Bizyukov, I.A., Girka, O.I., Sereda, K.N., Bazdyreva, S.V., Malykhin, S.V., Pugachov, A.T.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/109237
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results / V.A. Makhlaj, N.N. Aksenov, O.V. Byrka, I.E. Garkusha, A.A. Bizyukov, I.A. Bizyukov, O.I. Girka, K.N. Sereda, S.V. Bazdyreva, S.V. Malykhin, A.T. Pugachov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 70-72. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-109237
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1092372025-02-23T18:00:10Z Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results Комбинированное облучение вольфрама стационарными и переходными водородными тепловыми нагрузками: предварительные результаты Комбіноване опромінення вольфраму стаціонарними і перехідними водневими тепловими навантаженнями: попередні результати Makhlaj, V.A. Aksenov, N.N. Byrka, O.V. Garkusha, I.E. Bizyukov, A.A. Bizyukov, I.A. Girka, O.I. Sereda, K.N. Bazdyreva, S.V. Malykhin, S.V. Pugachov, A.T. ИТЭР и приложения для термоядерного реактора Influence of combined hydrogen plasma exposures on tungsten behavior was studied in QSPA Kh-50 facility and steady-state ion beam system FALCON. Pulsed plasma loads (0.45 MJ/m²) were below the tungsten melting threshold. The influence of addition steady-state heat flux (of 0.43 MW/m² during 900 s) on development of surface damage in tungsten targets was studied. Evolution of residual stresses and lattice spacing were investigated. For combined irradiation faster relaxation of residual stresses occurred. The damage of exposed surface was caused by physical spattering and cracks appearing. Влияние комбинированных водородных плазменных экспозиций на поведение вольфрама изучено в КСПУ Х-50 и ионно-лучевой системе FALCON. Импульсные нагрузки (0.45 MДж/м²) были ниже порога плавления вольфрама. Было изучено влияние дополнительных стационарных тепловых нагрузок (0,43 MВт/м² в течение 900 с) на развитие поверхностных повреждений в вольфрамовых образцах. Развитие остаточных напряжений и параметра решетки было изучено для различных видов плазменного облучения. При комбинированном облучении зарегистрирована быстрая релаксация остаточных напряжений. Повреждения облученных поверхностей обусловлены физическим распылением и появлением трещин. Вплив комбінованих водневих плазмових експозицій на поведінку вольфраму вивчено в КСПП Х-50 и іонно-променевій системі FALCON. Імпульсні навантаження (0.45 MДж/м²) були нижче порогу плавлення вольфраму. Було вивчено вплив додаткових стаціонарних теплових навантажень (0,43 MВт/м² протягом 900 с) на розвиток поверхневих пошкоджень у вольфрамових зразках. Розвиток залишкових напружень і параметра решітки було вивчено для різних видів плазмового опромінення. При комбінованому опроміненні зареєстровано швидку релаксацію залишкових напружень. Пошкодження опромінених поверхонь обумовлені фізичним розпорошенням і появою тріщин. 2013 2013 Article Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results / V.A. Makhlaj, N.N. Aksenov, O.V. Byrka, I.E. Garkusha, A.A. Bizyukov, I.A. Bizyukov, O.I. Girka, K.N. Sereda, S.V. Bazdyreva, S.V. Malykhin, A.T. Pugachov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 70-72. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.40.Hf https://nasplib.isofts.kiev.ua/handle/123456789/109237 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic ИТЭР и приложения для термоядерного реактора
ИТЭР и приложения для термоядерного реактора
spellingShingle ИТЭР и приложения для термоядерного реактора
ИТЭР и приложения для термоядерного реактора
Makhlaj, V.A.
Aksenov, N.N.
Byrka, O.V.
Garkusha, I.E.
Bizyukov, A.A.
Bizyukov, I.A.
Girka, O.I.
Sereda, K.N.
Bazdyreva, S.V.
Malykhin, S.V.
Pugachov, A.T.
Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results
Вопросы атомной науки и техники
description Influence of combined hydrogen plasma exposures on tungsten behavior was studied in QSPA Kh-50 facility and steady-state ion beam system FALCON. Pulsed plasma loads (0.45 MJ/m²) were below the tungsten melting threshold. The influence of addition steady-state heat flux (of 0.43 MW/m² during 900 s) on development of surface damage in tungsten targets was studied. Evolution of residual stresses and lattice spacing were investigated. For combined irradiation faster relaxation of residual stresses occurred. The damage of exposed surface was caused by physical spattering and cracks appearing.
format Article
author Makhlaj, V.A.
Aksenov, N.N.
Byrka, O.V.
Garkusha, I.E.
Bizyukov, A.A.
Bizyukov, I.A.
Girka, O.I.
Sereda, K.N.
Bazdyreva, S.V.
Malykhin, S.V.
Pugachov, A.T.
author_facet Makhlaj, V.A.
Aksenov, N.N.
Byrka, O.V.
Garkusha, I.E.
Bizyukov, A.A.
Bizyukov, I.A.
Girka, O.I.
Sereda, K.N.
Bazdyreva, S.V.
Malykhin, S.V.
Pugachov, A.T.
author_sort Makhlaj, V.A.
title Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results
title_short Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results
title_full Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results
title_fullStr Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results
title_full_unstemmed Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results
title_sort combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet ИТЭР и приложения для термоядерного реактора
url https://nasplib.isofts.kiev.ua/handle/123456789/109237
citation_txt Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results / V.A. Makhlaj, N.N. Aksenov, O.V. Byrka, I.E. Garkusha, A.A. Bizyukov, I.A. Bizyukov, O.I. Girka, K.N. Sereda, S.V. Bazdyreva, S.V. Malykhin, A.T. Pugachov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 70-72. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT makhlajva combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults
AT aksenovnn combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults
AT byrkaov combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults
AT garkushaie combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults
AT bizyukovaa combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults
AT bizyukovia combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults
AT girkaoi combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults
AT seredakn combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults
AT bazdyrevasv combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults
AT malykhinsv combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults
AT pugachovat combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults
AT makhlajva kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty
AT aksenovnn kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty
AT byrkaov kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty
AT garkushaie kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty
AT bizyukovaa kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty
AT bizyukovia kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty
AT girkaoi kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty
AT seredakn kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty
AT bazdyrevasv kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty
AT malykhinsv kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty
AT pugachovat kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty
AT makhlajva kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati
AT aksenovnn kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati
AT byrkaov kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati
AT garkushaie kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati
AT bizyukovaa kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati
AT bizyukovia kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati
AT girkaoi kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati
AT seredakn kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati
AT bazdyrevasv kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati
AT malykhinsv kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati
AT pugachovat kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati
first_indexed 2025-11-24T06:09:01Z
last_indexed 2025-11-24T06:09:01Z
_version_ 1849650883203170304
fulltext 70 ISSN 1562-6016. ВАНТ. 2013. №1(83) COMBINED EXPOSURES OF TUNGSTEN BY STATIONARY AND TRANSIENT HYDROGEN PLASMA HEAT LOADS: PRELIMINARY RESULTS V.A. Makhlaj1, N.N. Aksenov1, O.V. Byrka1, I.E. Garkusha1,2, A.A. Bizyukov2, I.A. Bizyukov2, O.I. Girka2, K.N. Sereda2, S.V. Bazdyreva3, S.V. Malykhin3, A.T. Pugachov3 1Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 2V.N. Karazin Kharkov National University, Kharkov, Ukraine; 3National Technical University “Kharkov Polytechnical Institute”, Kharkov, Ukraine Influence of combined hydrogen plasma exposures on tungsten behavior was studied in QSPA Kh-50 facility and steady-state ion beam system FALCON. Pulsed plasma loads (0.45 MJ/m2) were below the tungsten melting threshold. The influence of addition steady-state heat flux (of 0.43 MW/m2 during 900 s) on development of surface damage in tungsten targets was studied. Evolution of residual stresses and lattice spacing were investigated. For combined irradiation faster relaxation of residual stresses occurred. The damage of exposed surface was caused by physical spattering and cracks appearing. PACS: 52.40.Hf INTRODUCTION Evaluation of response of the ITER relevant materials to ITER-like powerful stationary and/or transient plasma loads remains to be among most important issues for realisation of fusion reactor project. The ITER divertor plasma-facing components (PFCs) will be exposed by stationary heat loads (SHL) of up to 10 MW/m2 in normal operation mode. Additionally, the SHL is superimposed by transient events such as large edge localize modes (ELMs, in the order of 1 MJ/m2 for 0.5 ms) [1]. The energy range of ITER transient events will be clearly higher than in the existing tokamaks. Taking into account the laboriousness of the experiments on plasma- surface interactions (PSI) in these devices, experimental investigations have to be performed with other powerful plasma sources able to reproduce the energy and particles loads during the transients [2-4]. For example, in [3] first experimental study of PFC’s tungsten damage under a combination of QSPA-T plasma loads and stationary heat loads created by e-beam facility are presented. The QSPA-T plasma exposure caused the melt layer motion and appearance a stable crack pattern on the exposed surface. Addition of stationary heat loads led to a peeling-off of the re-solidified material due to its brittle failure and a significant widening (up to 10 times) of the cracks and the formation of additional cracks. The results of heat flux tests performed in the electron beam facility JUDITH 2 with 106 pulses are presented in [4]. It is shown that the additional stationary heat load resulted in an earlier (in terms of pulse number) and more severe material degradation. It was also found that ITER ELMs have to be mitigated to stay at least below 0.27 GW/m2 for 0.48 ms pulses at Tsurf ≈700º C in order to avoid complete damage by these heat loads. Thus, first experiments with a combined transient and stationary heat loads have shown strong influence of combined impact on ITER divertor materials. Hence, estimations of lifetime and evaluations of operational thresholds of divertor components in conditions of combined heat loads relevant to ITER are required additional experimental studies. This paper presents the preliminary results of combined pulsed and stationary hydrogen plasma load generated by QSPA plasma accelerator and steady-state ion source. 1. EXPERIMENTAL CONDITIONS The combined plasma exposures have been performed using the QSPA Kh-50 [2] and FALCON ion source [5]. Tungsten targets of EU trademark have the sizes 15 mm×11mm×0.8 mm. The single cycle of tungsten irradiation consisted of two stages: during first stage the target has been irradiated with 5 pulses of QSPA Kh-50 plasma streams. In the second stage the target is exposed with steady-state hydrogen ion flux using FALCON ion source. The main parameters of the QSPA Kh-50 plasma streams are as follows: ion impact energy about 0.4 keV, maximum plasma pressure 3.2 bar, and the stream diameter 18 cm. The surface energy load measured with a calorimeter achieved 0.45 MJ/m2, that corresponded to ITER type I ELMs. The plasma pulse shape is approximately triangular, pulse duration of 0.25 ms. The sample has been also irradiated with steady- state hydrogen ion flux using FALCON ion source [5, 6]. The source generated hydrogen ion beam with a diameter of 3 mm and an average energy of 2 keV. The sample has been exposed to relatively high particle (0.53х1022 m-2s-1) and heat (0.43 MW/m2) fluxes during 900 seconds, which allowed to reach a fluence of 4,8x1024 m-2. Temperature of the sample was increased from room temperature to 890 K during the exposure due to relatively high heat flux and an absence of water cooling. The influence of the ion beam on the sample temperature was studied previously [6] and in this work only ion beam measurements were used for temperature evaluation. Surface analysis was carried out with an optical microscope MMR-4 equipped with a CCD camera and Scanning Electron Microscopy (SEM) JEOL JSM-6390. Measurements of weight losses and roughness of the surface were performed also. To study micro-structural ISSN 1562-6016. ВАНТ. 2013. №1(83) 71 evolution of exposed W targets, X-ray diffraction technique (XRD) has been used. So called ‘ϑ-2ϑ scans’ were performed using a monochromatic Kα line of Cu anode radiation. Diffraction peaks intensity, their profiles, and their angular positions were analyzed in order to evaluate the texture, the size of coherent scattering zone, the macrostrain and the lattice parameters. Stress measurement has been performed employing sin2ψ method of XRD. (400) diffraction with Bragg diffraction at 2ϑ=153.53° for tungsten is studied to plot the lattice spacing vs. sin2ψ curves in both positive and negative ψ ranges [7]. Detailed descriptions of sin2ψ method of residual stresses determination can be found in [7, 8]. The absolute errors for the stress and the lattice spacing measurements are ± 30 MPa and ± 5.10-5 nm, respectively. Performed measurements demonstrate that values of principal stresses σ1, σ2 and σϕ are within the error range of the measurements, i.e. strain is symmetrical [8]. 2. EXPERIMENTAL RESULTS Non-exposed samples are characterized by lower number of line defects. Halfwidth of the peak (i.e. width on half-height of diffraction profile) is B ≈ 0.62º. The tungsten lattice spacing and the residual stress have been evaluated from analysis of a-sin2ψ plots. Example of the measured linear dependencies a-sin2ψ is presented in Fig. 1. 0,0 0,2 0,4 0,6 0,8 0.3168 0.3166 0.3164 0.3162 0.3160 1 2 3 4 5 a 0, n m sin2ψ 0.3158 Fig. 1. a–sin2ψ dependences for exposed tungsten: initial state (1); after combined irradiation: first stage of single cycle (2), single cycle (3), after first stage of second cycle (4), second cycle (5) In initial state the residual stresses in W targets are found to be on the level of -220 MPa (i.e. compressed stresses). The lattice parameter a0≈0.31644 nm is close to the reference value (аref=0.31652 nm).The XRD diffraction analysis allows to conclude, that there are no material phases built of impurities in tungsten surface layer. Only W lines are detected on the surface and in deeper layers. There is small change (B ≈ 0.66º) of diffraction profile as a result of QSPA plasma exposures. This is due to creation of lower number of line defects. The a0 changes slightly as the result of pulsed and stationary plasma exposures. Transient heat load to the tungsten surfaces leads to symmetrical tensile stresses creation on W surface layer as a result of pulsed plasma irradiation (Fig. 2). Main residual stresses are caused by first plasma pulses. Maine relaxation of stresses from 810 till 470 MPa was observed after first cycle of stationary plasma irradiation. After two cycles of plasma irradiation the residual stresses relaxed till 300 MPa. It should be noted that for combined plasma irradiation residual stresses relax faster than for pulsed plasma irradiation only [8, 9]. -300 0 300 600 900 Combined irradiation 5 QSPA pulses 10 QSPA pulses 4 2 3 1 R es id ua l s tr es s, M Pa Initial Fig. 2. Results of residual stress measurements: combined irradiation: first stage of single cycle (1), single cycle (2), after first stage of second cycle (3), second cycle (4) The roughness of exposed surface (Fig. 3) is caused by distinguished boundary of grains as result of plasma ions bombardment and also by some isolated intergranular cracks (Figs. 4 and 5) due to the thermal stresses. Development of cracks causes the stress relaxation after plasma irradiation. Fig. 3. Profile of exposed surface after two cycles of combined plasma irradiation Fig. 4. View of exposed surface after two cycles of plasma irradiation Cracks do not form the complete network. Another feature of cracks formation is that cracks are formed in points of grains confluence as well as at the boundary of separate grains. The crack length does not exceed 50 μm and the width is not more than 1 μm. 72 ISSN 1562-6016. ВАНТ. 2013. №1(83) Fig. 5. SEM view of exposed surface CONCLUSIONS Combined plasma exposures of EU tungsten targets are performed using both QSPA Kh-50 pulses ( of 0.45 MJ/m2 and 0.25 ms in duration) and steady-state hydrogen ion flux (0.43 MW/m2 during 900 s) of FALCON ion source. Symmetrical tensile stresses are created in tungsten surface layer in result of plasma irradiation. The maximal stresses in plasma affected layer are formed after the first plasma pulses. Diminution of residual stresses is observed with increase of exposition dose. Faster relaxation of residual stresses in comparison with only pulsed plasma exposures is registered as a result of the combined influence. The correlation of cracks development with stress relaxation is demonstrated. REFERENCES 1. R.J. Hawryluk et al. Principal physics developments evaluated in the ITER design review // Nucl. Fusion. 2009, v. 49, p. 065012. 2. V.A. Makhlaj et al. Simulation of ITER edge- localized modes’ impacts on the divertor surfaces within plasma accelerators // Phys. Scr. 2011, v. T145, p. 014061. 3. N.S. Klimov et al. Experimental study of divertor plasma-facing components damage under a combination of pulsed and quasi-stationary heat loads relevant to expected transient events at ITER // Phys. Scr. 2011, v. T145, p. 014064. 4. Th. Loewenhoff et al. Evolution of tungsten degradation under combined high cycle edge-localized mode and steady-state heat loads // Phys. Scr. 2011, v. T145, p. 014057. 5. O. Girka et al. Compact steady-state and high-flux FALCON ion source for tests of plasma-facing materials // Review of Scientific Instruments. 2012, v. 83, p. 083501. 6. O. Girka et al. Tungsten Erosion under Steady-State High-Flux and High-Fluence Hydrogen Ion Beam Bombardment // 21st International Conference Nuclear Energy for New Europe Ljubljana 2012, Conference Proceedings. 2012, p. 165.1-165.6. 7. I.C. Noyan, J.B. Cohen. Residual Stress. New York: “Springer”, 1987, p. 274. 8. V.A. Makhlaj et al. Residual stresses in tungsten under exposures with ITER ELM-like plasma loads // Phys. Scr. 2009, v. T138, p. 014060. 9. V.A. Makhlaj et al. Influence of hydrogen and helium plasma streams exposures on modification of tungsten structure under powerful transient loads // Problems of Atomic Science and Technology. 2011, № 1, p. 71-73. Article received 24.01.13 КОМБИНИРОВАННОЕ ОБЛУЧЕНИЕ ВОЛЬФРАМА СТАЦИОНАРНЫМИ И ПЕРЕХОДНЫМИ ВОДОРОДНЫМИ ТЕПЛОВЫМИ НАГРУЗКАМИ: ПРЕДВАРИТЕЛЬНЫЕ РЕЗУЛЬТАТЫ В.A. Maхлай, Н.Н. Аксенов, О.В. Бирка, И.Е. Гаркуша, А.A. Бизюков, И.A. Бизюков, А.И. Гирка, К.Н. Середа, С.В. Баздырева, С.В. Малыхин, A.T. Пугачов Влияние комбинированных водородных плазменных экспозиций на поведение вольфрама изучено в КСПУ Х-50 и ионно-лучевой системе FALCON. Импульсные нагрузки (0.45 MДж/м2) были ниже порога плавления вольфрама. Было изучено влияние дополнительных стационарных тепловых нагрузок (0,43 MВт/м2 в течение 900 с) на развитие поверхностных повреждений в вольфрамовых образцах. Развитие остаточных напряжений и параметра решетки было изучено для различных видов плазменного облучения. При комбинированном облучении зарегистрирована быстрая релаксация остаточных напряжений. Повреждения облученных поверхностей обусловлены физическим распылением и появлением трещин. КОМБІНОВАНЕ ОПРОМІНЕННЯ ВОЛЬФРАМУ СТАЦІОНАРНИМИ І ПЕРЕХІДНИМИ ВОДНЕВИМИ ТЕПЛОВИМИ НАВАНТАЖЕННЯМИ: ПОПЕРЕДНІ РЕЗУЛЬТАТИ В.О. Maхлай, М.М. Аксьонов, О.В. Бирка, I.Є. Гаркуша, О.A. Бізюков, І.О. Бізюков, О.І. Гирка, К.М. Середа, С.В. Баздирева, С.В. Малихін, A.T. Пугачов Вплив комбінованих водневих плазмових експозицій на поведінку вольфраму вивчено в КСПП Х-50 и іонно-променевій системі FALCON. Імпульсні навантаження (0.45 MДж/м2) були нижче порогу плавлення вольфраму. Було вивчено вплив додаткових стаціонарних теплових навантажень (0,43 MВт/м2 протягом 900 с) на розвиток поверхневих пошкоджень у вольфрамових зразках. Розвиток залишкових напружень і параметра решітки було вивчено для різних видів плазмового опромінення. При комбінованому опроміненні зареєстровано швидку релаксацію залишкових напружень. Пошкодження опромінених поверхонь обумовлені фізичним розпорошенням і появою тріщин.