Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results
Influence of combined hydrogen plasma exposures on tungsten behavior was studied in QSPA Kh-50 facility and steady-state ion beam system FALCON. Pulsed plasma loads (0.45 MJ/m²) were below the tungsten melting threshold. The influence of addition steady-state heat flux (of 0.43 MW/m² during 900 s) o...
Збережено в:
| Дата: | 2013 |
|---|---|
| Автори: | , , , , , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
| Назва видання: | Вопросы атомной науки и техники |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/109237 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results / V.A. Makhlaj, N.N. Aksenov, O.V. Byrka, I.E. Garkusha, A.A. Bizyukov, I.A. Bizyukov, O.I. Girka, K.N. Sereda, S.V. Bazdyreva, S.V. Malykhin, A.T. Pugachov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 70-72. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-109237 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1092372025-02-23T18:00:10Z Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results Комбинированное облучение вольфрама стационарными и переходными водородными тепловыми нагрузками: предварительные результаты Комбіноване опромінення вольфраму стаціонарними і перехідними водневими тепловими навантаженнями: попередні результати Makhlaj, V.A. Aksenov, N.N. Byrka, O.V. Garkusha, I.E. Bizyukov, A.A. Bizyukov, I.A. Girka, O.I. Sereda, K.N. Bazdyreva, S.V. Malykhin, S.V. Pugachov, A.T. ИТЭР и приложения для термоядерного реактора Influence of combined hydrogen plasma exposures on tungsten behavior was studied in QSPA Kh-50 facility and steady-state ion beam system FALCON. Pulsed plasma loads (0.45 MJ/m²) were below the tungsten melting threshold. The influence of addition steady-state heat flux (of 0.43 MW/m² during 900 s) on development of surface damage in tungsten targets was studied. Evolution of residual stresses and lattice spacing were investigated. For combined irradiation faster relaxation of residual stresses occurred. The damage of exposed surface was caused by physical spattering and cracks appearing. Влияние комбинированных водородных плазменных экспозиций на поведение вольфрама изучено в КСПУ Х-50 и ионно-лучевой системе FALCON. Импульсные нагрузки (0.45 MДж/м²) были ниже порога плавления вольфрама. Было изучено влияние дополнительных стационарных тепловых нагрузок (0,43 MВт/м² в течение 900 с) на развитие поверхностных повреждений в вольфрамовых образцах. Развитие остаточных напряжений и параметра решетки было изучено для различных видов плазменного облучения. При комбинированном облучении зарегистрирована быстрая релаксация остаточных напряжений. Повреждения облученных поверхностей обусловлены физическим распылением и появлением трещин. Вплив комбінованих водневих плазмових експозицій на поведінку вольфраму вивчено в КСПП Х-50 и іонно-променевій системі FALCON. Імпульсні навантаження (0.45 MДж/м²) були нижче порогу плавлення вольфраму. Було вивчено вплив додаткових стаціонарних теплових навантажень (0,43 MВт/м² протягом 900 с) на розвиток поверхневих пошкоджень у вольфрамових зразках. Розвиток залишкових напружень і параметра решітки було вивчено для різних видів плазмового опромінення. При комбінованому опроміненні зареєстровано швидку релаксацію залишкових напружень. Пошкодження опромінених поверхонь обумовлені фізичним розпорошенням і появою тріщин. 2013 2013 Article Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results / V.A. Makhlaj, N.N. Aksenov, O.V. Byrka, I.E. Garkusha, A.A. Bizyukov, I.A. Bizyukov, O.I. Girka, K.N. Sereda, S.V. Bazdyreva, S.V. Malykhin, A.T. Pugachov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 70-72. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.40.Hf https://nasplib.isofts.kiev.ua/handle/123456789/109237 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
ИТЭР и приложения для термоядерного реактора ИТЭР и приложения для термоядерного реактора |
| spellingShingle |
ИТЭР и приложения для термоядерного реактора ИТЭР и приложения для термоядерного реактора Makhlaj, V.A. Aksenov, N.N. Byrka, O.V. Garkusha, I.E. Bizyukov, A.A. Bizyukov, I.A. Girka, O.I. Sereda, K.N. Bazdyreva, S.V. Malykhin, S.V. Pugachov, A.T. Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results Вопросы атомной науки и техники |
| description |
Influence of combined hydrogen plasma exposures on tungsten behavior was studied in QSPA Kh-50 facility and steady-state ion beam system FALCON. Pulsed plasma loads (0.45 MJ/m²) were below the tungsten melting threshold. The influence of addition steady-state heat flux (of 0.43 MW/m² during 900 s) on development of surface damage in tungsten targets was studied. Evolution of residual stresses and lattice spacing were investigated. For combined irradiation faster relaxation of residual stresses occurred. The damage of exposed surface was caused by physical spattering and cracks appearing. |
| format |
Article |
| author |
Makhlaj, V.A. Aksenov, N.N. Byrka, O.V. Garkusha, I.E. Bizyukov, A.A. Bizyukov, I.A. Girka, O.I. Sereda, K.N. Bazdyreva, S.V. Malykhin, S.V. Pugachov, A.T. |
| author_facet |
Makhlaj, V.A. Aksenov, N.N. Byrka, O.V. Garkusha, I.E. Bizyukov, A.A. Bizyukov, I.A. Girka, O.I. Sereda, K.N. Bazdyreva, S.V. Malykhin, S.V. Pugachov, A.T. |
| author_sort |
Makhlaj, V.A. |
| title |
Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results |
| title_short |
Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results |
| title_full |
Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results |
| title_fullStr |
Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results |
| title_full_unstemmed |
Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results |
| title_sort |
combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2013 |
| topic_facet |
ИТЭР и приложения для термоядерного реактора |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/109237 |
| citation_txt |
Combined exposures of tungsten by stationary and transient hydrogen plasma heat loads: preliminary results / V.A. Makhlaj, N.N. Aksenov, O.V. Byrka, I.E. Garkusha, A.A. Bizyukov, I.A. Bizyukov, O.I. Girka, K.N. Sereda, S.V. Bazdyreva, S.V. Malykhin, A.T. Pugachov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 70-72. — Бібліогр.: 9 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT makhlajva combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults AT aksenovnn combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults AT byrkaov combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults AT garkushaie combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults AT bizyukovaa combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults AT bizyukovia combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults AT girkaoi combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults AT seredakn combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults AT bazdyrevasv combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults AT malykhinsv combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults AT pugachovat combinedexposuresoftungstenbystationaryandtransienthydrogenplasmaheatloadspreliminaryresults AT makhlajva kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty AT aksenovnn kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty AT byrkaov kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty AT garkushaie kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty AT bizyukovaa kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty AT bizyukovia kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty AT girkaoi kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty AT seredakn kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty AT bazdyrevasv kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty AT malykhinsv kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty AT pugachovat kombinirovannoeoblučenievolʹframastacionarnymiiperehodnymivodorodnymiteplovyminagruzkamipredvaritelʹnyerezulʹtaty AT makhlajva kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati AT aksenovnn kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati AT byrkaov kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati AT garkushaie kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati AT bizyukovaa kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati AT bizyukovia kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati AT girkaoi kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati AT seredakn kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati AT bazdyrevasv kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati AT malykhinsv kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati AT pugachovat kombínovaneopromínennâvolʹframustacíonarnimiíperehídnimivodnevimiteploviminavantažennâmipoperednírezulʹtati |
| first_indexed |
2025-11-24T06:09:01Z |
| last_indexed |
2025-11-24T06:09:01Z |
| _version_ |
1849650883203170304 |
| fulltext |
70 ISSN 1562-6016. ВАНТ. 2013. №1(83)
COMBINED EXPOSURES OF TUNGSTEN BY STATIONARY AND
TRANSIENT HYDROGEN PLASMA HEAT LOADS: PRELIMINARY
RESULTS
V.A. Makhlaj1, N.N. Aksenov1, O.V. Byrka1, I.E. Garkusha1,2, A.A. Bizyukov2,
I.A. Bizyukov2, O.I. Girka2, K.N. Sereda2, S.V. Bazdyreva3, S.V. Malykhin3, A.T. Pugachov3
1Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
2V.N. Karazin Kharkov National University, Kharkov, Ukraine;
3National Technical University “Kharkov Polytechnical Institute”, Kharkov, Ukraine
Influence of combined hydrogen plasma exposures on tungsten behavior was studied in QSPA Kh-50 facility and
steady-state ion beam system FALCON. Pulsed plasma loads (0.45 MJ/m2) were below the tungsten melting
threshold. The influence of addition steady-state heat flux (of 0.43 MW/m2 during 900 s) on development of surface
damage in tungsten targets was studied. Evolution of residual stresses and lattice spacing were investigated. For
combined irradiation faster relaxation of residual stresses occurred. The damage of exposed surface was caused by
physical spattering and cracks appearing.
PACS: 52.40.Hf
INTRODUCTION
Evaluation of response of the ITER relevant
materials to ITER-like powerful stationary and/or
transient plasma loads remains to be among most
important issues for realisation of fusion reactor project.
The ITER divertor plasma-facing components (PFCs)
will be exposed by stationary heat loads (SHL) of up to
10 MW/m2 in normal operation mode. Additionally, the
SHL is superimposed by transient events such as large
edge localize modes (ELMs, in the order of 1 MJ/m2 for
0.5 ms) [1].
The energy range of ITER transient events will be
clearly higher than in the existing tokamaks. Taking into
account the laboriousness of the experiments on plasma-
surface interactions (PSI) in these devices, experimental
investigations have to be performed with other powerful
plasma sources able to reproduce the energy and
particles loads during the transients [2-4]. For example,
in [3] first experimental study of PFC’s tungsten
damage under a combination of QSPA-T plasma loads
and stationary heat loads created by e-beam facility are
presented. The QSPA-T plasma exposure caused the
melt layer motion and appearance a stable crack pattern
on the exposed surface. Addition of stationary heat
loads led to a peeling-off of the re-solidified material
due to its brittle failure and a significant widening (up to
10 times) of the cracks and the formation of additional
cracks. The results of heat flux tests performed in the
electron beam facility JUDITH 2 with 106 pulses are
presented in [4]. It is shown that the additional
stationary heat load resulted in an earlier (in terms of
pulse number) and more severe material degradation. It
was also found that ITER ELMs have to be mitigated to
stay at least below 0.27 GW/m2 for 0.48 ms pulses at
Tsurf ≈700º C in order to avoid complete damage by
these heat loads.
Thus, first experiments with a combined transient
and stationary heat loads have shown strong influence
of combined impact on ITER divertor materials. Hence,
estimations of lifetime and evaluations of operational
thresholds of divertor components in conditions of
combined heat loads relevant to ITER are required
additional experimental studies. This paper presents the
preliminary results of combined pulsed and stationary
hydrogen plasma load generated by QSPA plasma
accelerator and steady-state ion source.
1. EXPERIMENTAL CONDITIONS
The combined plasma exposures have been
performed using the QSPA Kh-50 [2] and FALCON ion
source [5]. Tungsten targets of EU trademark have the
sizes 15 mm×11mm×0.8 mm. The single cycle of
tungsten irradiation consisted of two stages: during first
stage the target has been irradiated with 5 pulses of
QSPA Kh-50 plasma streams. In the second stage the
target is exposed with steady-state hydrogen ion flux
using FALCON ion source.
The main parameters of the QSPA Kh-50 plasma
streams are as follows: ion impact energy about
0.4 keV, maximum plasma pressure 3.2 bar, and the
stream diameter 18 cm. The surface energy load
measured with a calorimeter achieved 0.45 MJ/m2, that
corresponded to ITER type I ELMs. The plasma pulse
shape is approximately triangular, pulse duration of
0.25 ms.
The sample has been also irradiated with steady-
state hydrogen ion flux using FALCON ion source [5,
6]. The source generated hydrogen ion beam with a
diameter of 3 mm and an average energy of 2 keV. The
sample has been exposed to relatively high particle
(0.53х1022 m-2s-1) and heat (0.43 MW/m2) fluxes during
900 seconds, which allowed to reach a fluence of
4,8x1024 m-2. Temperature of the sample was increased
from room temperature to 890 K during the exposure
due to relatively high heat flux and an absence of water
cooling. The influence of the ion beam on the sample
temperature was studied previously [6] and in this work
only ion beam measurements were used for temperature
evaluation.
Surface analysis was carried out with an optical
microscope MMR-4 equipped with a CCD camera and
Scanning Electron Microscopy (SEM) JEOL JSM-6390.
Measurements of weight losses and roughness of the
surface were performed also. To study micro-structural
ISSN 1562-6016. ВАНТ. 2013. №1(83) 71
evolution of exposed W targets, X-ray diffraction
technique (XRD) has been used. So called ‘ϑ-2ϑ scans’
were performed using a monochromatic Kα line of Cu
anode radiation. Diffraction peaks intensity, their
profiles, and their angular positions were analyzed in
order to evaluate the texture, the size of coherent
scattering zone, the macrostrain and the lattice
parameters.
Stress measurement has been performed employing
sin2ψ method of XRD. (400) diffraction with Bragg
diffraction at 2ϑ=153.53° for tungsten is studied to plot
the lattice spacing vs. sin2ψ curves in both positive and
negative ψ ranges [7]. Detailed descriptions of sin2ψ
method of residual stresses determination can be found
in [7, 8]. The absolute errors for the stress and the lattice
spacing measurements are ± 30 MPa and ± 5.10-5 nm,
respectively. Performed measurements demonstrate that
values of principal stresses σ1, σ2 and σϕ are within the
error range of the measurements, i.e. strain is
symmetrical [8].
2. EXPERIMENTAL RESULTS
Non-exposed samples are characterized by lower
number of line defects. Halfwidth of the peak (i.e. width
on half-height of diffraction profile) is B ≈ 0.62º. The
tungsten lattice spacing and the residual stress have
been evaluated from analysis of a-sin2ψ plots. Example
of the measured linear dependencies a-sin2ψ is
presented in Fig. 1.
0,0 0,2 0,4 0,6 0,8
0.3168
0.3166
0.3164
0.3162
0.3160
1
2
3
4
5
a 0, n
m
sin2ψ
0.3158
Fig. 1. a–sin2ψ dependences for exposed tungsten:
initial state (1); after combined irradiation: first stage
of single cycle (2), single cycle (3), after first stage of
second cycle (4), second cycle (5)
In initial state the residual stresses in W targets are
found to be on the level of -220 MPa (i.e. compressed
stresses). The lattice parameter a0≈0.31644 nm is close
to the reference value (аref=0.31652 nm).The XRD
diffraction analysis allows to conclude, that there are no
material phases built of impurities in tungsten surface
layer. Only W lines are detected on the surface and in
deeper layers.
There is small change (B ≈ 0.66º) of diffraction
profile as a result of QSPA plasma exposures. This is
due to creation of lower number of line defects. The a0
changes slightly as the result of pulsed and stationary
plasma exposures.
Transient heat load to the tungsten surfaces leads to
symmetrical tensile stresses creation on W surface layer
as a result of pulsed plasma irradiation (Fig. 2). Main
residual stresses are caused by first plasma pulses.
Maine relaxation of stresses from 810 till 470 MPa was
observed after first cycle of stationary plasma
irradiation. After two cycles of plasma irradiation the
residual stresses relaxed till 300 MPa. It should be noted
that for combined plasma irradiation residual stresses
relax faster than for pulsed plasma irradiation only [8, 9].
-300
0
300
600
900
Combined irradiation
5 QSPA pulses
10 QSPA pulses
4
2
3
1
R
es
id
ua
l s
tr
es
s,
M
Pa
Initial
Fig. 2. Results of residual stress measurements:
combined irradiation: first stage of single cycle (1),
single cycle (2), after first stage of second cycle (3),
second cycle (4)
The roughness of exposed surface (Fig. 3) is caused
by distinguished boundary of grains as result of plasma
ions bombardment and also by some isolated
intergranular cracks (Figs. 4 and 5) due to the thermal
stresses. Development of cracks causes the stress
relaxation after plasma irradiation.
Fig. 3. Profile of exposed surface after two cycles of
combined plasma irradiation
Fig. 4. View of exposed surface after two cycles of
plasma irradiation
Cracks do not form the complete network. Another
feature of cracks formation is that cracks are formed in
points of grains confluence as well as at the boundary of
separate grains. The crack length does not exceed
50 μm and the width is not more than 1 μm.
72 ISSN 1562-6016. ВАНТ. 2013. №1(83)
Fig. 5. SEM view of exposed surface
CONCLUSIONS
Combined plasma exposures of EU tungsten targets
are performed using both QSPA Kh-50 pulses ( of
0.45 MJ/m2 and 0.25 ms in duration) and steady-state
hydrogen ion flux (0.43 MW/m2 during 900 s) of
FALCON ion source.
Symmetrical tensile stresses are created in tungsten
surface layer in result of plasma irradiation. The
maximal stresses in plasma affected layer are formed
after the first plasma pulses. Diminution of residual
stresses is observed with increase of exposition dose.
Faster relaxation of residual stresses in comparison
with only pulsed plasma exposures is registered as a
result of the combined influence. The correlation of
cracks development with stress relaxation is
demonstrated.
REFERENCES
1. R.J. Hawryluk et al. Principal physics developments
evaluated in the ITER design review // Nucl. Fusion.
2009, v. 49, p. 065012.
2. V.A. Makhlaj et al. Simulation of ITER edge-
localized modes’ impacts on the divertor surfaces within
plasma accelerators // Phys. Scr. 2011, v. T145,
p. 014061.
3. N.S. Klimov et al. Experimental study of divertor
plasma-facing components damage under a combination
of pulsed and quasi-stationary heat loads relevant to
expected transient events at ITER // Phys. Scr. 2011,
v. T145, p. 014064.
4. Th. Loewenhoff et al. Evolution of tungsten
degradation under combined high cycle edge-localized
mode and steady-state heat loads // Phys. Scr. 2011,
v. T145, p. 014057.
5. O. Girka et al. Compact steady-state and high-flux
FALCON ion source for tests of plasma-facing
materials // Review of Scientific Instruments. 2012,
v. 83, p. 083501.
6. O. Girka et al. Tungsten Erosion under Steady-State
High-Flux and High-Fluence Hydrogen Ion Beam
Bombardment // 21st International Conference Nuclear
Energy for New Europe Ljubljana 2012, Conference
Proceedings. 2012, p. 165.1-165.6.
7. I.C. Noyan, J.B. Cohen. Residual Stress. New York:
“Springer”, 1987, p. 274.
8. V.A. Makhlaj et al. Residual stresses in tungsten
under exposures with ITER ELM-like plasma loads //
Phys. Scr. 2009, v. T138, p. 014060.
9. V.A. Makhlaj et al. Influence of hydrogen and helium
plasma streams exposures on modification of tungsten
structure under powerful transient loads // Problems of
Atomic Science and Technology. 2011, № 1, p. 71-73.
Article received 24.01.13
КОМБИНИРОВАННОЕ ОБЛУЧЕНИЕ ВОЛЬФРАМА СТАЦИОНАРНЫМИ И ПЕРЕХОДНЫМИ
ВОДОРОДНЫМИ ТЕПЛОВЫМИ НАГРУЗКАМИ: ПРЕДВАРИТЕЛЬНЫЕ РЕЗУЛЬТАТЫ
В.A. Maхлай, Н.Н. Аксенов, О.В. Бирка, И.Е. Гаркуша, А.A. Бизюков, И.A. Бизюков, А.И. Гирка,
К.Н. Середа, С.В. Баздырева, С.В. Малыхин, A.T. Пугачов
Влияние комбинированных водородных плазменных экспозиций на поведение вольфрама изучено в
КСПУ Х-50 и ионно-лучевой системе FALCON. Импульсные нагрузки (0.45 MДж/м2) были ниже порога
плавления вольфрама. Было изучено влияние дополнительных стационарных тепловых нагрузок
(0,43 MВт/м2 в течение 900 с) на развитие поверхностных повреждений в вольфрамовых образцах. Развитие
остаточных напряжений и параметра решетки было изучено для различных видов плазменного облучения.
При комбинированном облучении зарегистрирована быстрая релаксация остаточных напряжений.
Повреждения облученных поверхностей обусловлены физическим распылением и появлением трещин.
КОМБІНОВАНЕ ОПРОМІНЕННЯ ВОЛЬФРАМУ СТАЦІОНАРНИМИ І ПЕРЕХІДНИМИ
ВОДНЕВИМИ ТЕПЛОВИМИ НАВАНТАЖЕННЯМИ:
ПОПЕРЕДНІ РЕЗУЛЬТАТИ
В.О. Maхлай, М.М. Аксьонов, О.В. Бирка, I.Є. Гаркуша, О.A. Бізюков, І.О. Бізюков, О.І. Гирка,
К.М. Середа, С.В. Баздирева, С.В. Малихін, A.T. Пугачов
Вплив комбінованих водневих плазмових експозицій на поведінку вольфраму вивчено в КСПП Х-50 и
іонно-променевій системі FALCON. Імпульсні навантаження (0.45 MДж/м2) були нижче порогу плавлення
вольфраму. Було вивчено вплив додаткових стаціонарних теплових навантажень (0,43 MВт/м2 протягом
900 с) на розвиток поверхневих пошкоджень у вольфрамових зразках. Розвиток залишкових напружень і
параметра решітки було вивчено для різних видів плазмового опромінення. При комбінованому опроміненні
зареєстровано швидку релаксацію залишкових напружень. Пошкодження опромінених поверхонь
обумовлені фізичним розпорошенням і появою тріщин.
|