Nonliner mechanism of electromagnetic waves generations in space dust plasma

We consider a parametric excitation of electromagnetic waves induced by inertial Alfvén wave (IAW) in space dust plasma. The nonlinear dispersion equations describing decay of upper-hybrid wave (UHW) into the IAW and the ordinary electromagnetic wave as well as decay of UNW into the IAW and the left...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2007
Hauptverfasser: Voitsekhovskа, A.D., Yukhimuk, A.K., Sirenko, O.K.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/110407
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Nonliner mechanism of electromagnetic waves generations in space dust plasma / A.D. Voitsekhovskа, A.K. Yukhimuk, O.K. Sirenko // Вопросы атомной науки и техники. — 2007. — № 1. — С. 87-89. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-110407
record_format dspace
spelling Voitsekhovskа, A.D.
Yukhimuk, A.K.
Sirenko, O.K.
2017-01-04T11:53:24Z
2017-01-04T11:53:24Z
2007
Nonliner mechanism of electromagnetic waves generations in space dust plasma / A.D. Voitsekhovskа, A.K. Yukhimuk, O.K. Sirenko // Вопросы атомной науки и техники. — 2007. — № 1. — С. 87-89. — Бібліогр.: 7 назв. — англ.
1562-6016
PACS: 52.35.-g
https://nasplib.isofts.kiev.ua/handle/123456789/110407
We consider a parametric excitation of electromagnetic waves induced by inertial Alfvén wave (IAW) in space dust plasma. The nonlinear dispersion equations describing decay of upper-hybrid wave (UHW) into the IAW and the ordinary electromagnetic wave as well as decay of UNW into the IAW and the left-hand circularly polarized (LHCP) wave are obtained using the three-fluid magnetohydrodynamics. The instability growth rates which depend on dust plasma parameters are found. It is shown that the LPCH wave is preferably excited by the UH pump wave for the parameters of the Saturn's F-ring.
Розглянуто параметричне збудження електромагнітних хвиль інерційними альфвенівськими хвилями (ІАХ) в пиловій космічній плазмі. На основі рівнянь трирідинної магнітної гідродинаміки отримано нелінійне дисперсійне рівняння, що описує як розпад верхньогібридної хвилі на ІАХ та звичайну електромагнітну хвилю, так і розпад верхньогібридної хвилі на ІАХ та на лівополяризовану електромагнітну хвилю. Знайдено інкремент розвитку нестійкості, який залежить від параметрів пилової плазми. Показано, що лівополяризована електромагнітна хвиля переважно збуджується верхньогібридною хвилею накачки для параметрів F-кільця Сатурна.
Рассмотрено параметрическое возбуждение электромагнитных волн инерциальными альфвеновскими волнами (ИАВ) в пылевой космической плазме. На основе уравнений трехжидкостной магнитной гидродинамики получено нелинейное дисперсионное уравнение, описывающее как распад верхнегибридной волны на ИАВ и обыкновенную электромагнитную волну, так и распад верхнегибридной волны на ИАВ и левополяризованную электромагнитную волну. Найден инкремент развития неустойчивости, зависящий от параметров пылевой плазмы. Показано, что левополяризованная электромагнитная волна преимущественно возбуждается верхнегибридной волной накачки для параметров F-кольца Сатурна.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Space plasma
Nonliner mechanism of electromagnetic waves generations in space dust plasma
Нелінійний механізм генерації електромагнітних хвиль в пиловій космічній плазмі
Нелинейный механизм генерации электромагнитных волн в пылевой космической плазме
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Nonliner mechanism of electromagnetic waves generations in space dust plasma
spellingShingle Nonliner mechanism of electromagnetic waves generations in space dust plasma
Voitsekhovskа, A.D.
Yukhimuk, A.K.
Sirenko, O.K.
Space plasma
title_short Nonliner mechanism of electromagnetic waves generations in space dust plasma
title_full Nonliner mechanism of electromagnetic waves generations in space dust plasma
title_fullStr Nonliner mechanism of electromagnetic waves generations in space dust plasma
title_full_unstemmed Nonliner mechanism of electromagnetic waves generations in space dust plasma
title_sort nonliner mechanism of electromagnetic waves generations in space dust plasma
author Voitsekhovskа, A.D.
Yukhimuk, A.K.
Sirenko, O.K.
author_facet Voitsekhovskа, A.D.
Yukhimuk, A.K.
Sirenko, O.K.
topic Space plasma
topic_facet Space plasma
publishDate 2007
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Нелінійний механізм генерації електромагнітних хвиль в пиловій космічній плазмі
Нелинейный механизм генерации электромагнитных волн в пылевой космической плазме
description We consider a parametric excitation of electromagnetic waves induced by inertial Alfvén wave (IAW) in space dust plasma. The nonlinear dispersion equations describing decay of upper-hybrid wave (UHW) into the IAW and the ordinary electromagnetic wave as well as decay of UNW into the IAW and the left-hand circularly polarized (LHCP) wave are obtained using the three-fluid magnetohydrodynamics. The instability growth rates which depend on dust plasma parameters are found. It is shown that the LPCH wave is preferably excited by the UH pump wave for the parameters of the Saturn's F-ring. Розглянуто параметричне збудження електромагнітних хвиль інерційними альфвенівськими хвилями (ІАХ) в пиловій космічній плазмі. На основі рівнянь трирідинної магнітної гідродинаміки отримано нелінійне дисперсійне рівняння, що описує як розпад верхньогібридної хвилі на ІАХ та звичайну електромагнітну хвилю, так і розпад верхньогібридної хвилі на ІАХ та на лівополяризовану електромагнітну хвилю. Знайдено інкремент розвитку нестійкості, який залежить від параметрів пилової плазми. Показано, що лівополяризована електромагнітна хвиля переважно збуджується верхньогібридною хвилею накачки для параметрів F-кільця Сатурна. Рассмотрено параметрическое возбуждение электромагнитных волн инерциальными альфвеновскими волнами (ИАВ) в пылевой космической плазме. На основе уравнений трехжидкостной магнитной гидродинамики получено нелинейное дисперсионное уравнение, описывающее как распад верхнегибридной волны на ИАВ и обыкновенную электромагнитную волну, так и распад верхнегибридной волны на ИАВ и левополяризованную электромагнитную волну. Найден инкремент развития неустойчивости, зависящий от параметров пылевой плазмы. Показано, что левополяризованная электромагнитная волна преимущественно возбуждается верхнегибридной волной накачки для параметров F-кольца Сатурна.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/110407
citation_txt Nonliner mechanism of electromagnetic waves generations in space dust plasma / A.D. Voitsekhovskа, A.K. Yukhimuk, O.K. Sirenko // Вопросы атомной науки и техники. — 2007. — № 1. — С. 87-89. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT voitsekhovskaad nonlinermechanismofelectromagneticwavesgenerationsinspacedustplasma
AT yukhimukak nonlinermechanismofelectromagneticwavesgenerationsinspacedustplasma
AT sirenkook nonlinermechanismofelectromagneticwavesgenerationsinspacedustplasma
AT voitsekhovskaad nelíníiniimehanízmgeneracííelektromagnítnihhvilʹvpilovíikosmíčníiplazmí
AT yukhimukak nelíníiniimehanízmgeneracííelektromagnítnihhvilʹvpilovíikosmíčníiplazmí
AT sirenkook nelíníiniimehanízmgeneracííelektromagnítnihhvilʹvpilovíikosmíčníiplazmí
AT voitsekhovskaad nelineinyimehanizmgeneraciiélektromagnitnyhvolnvpylevoikosmičeskoiplazme
AT yukhimukak nelineinyimehanizmgeneraciiélektromagnitnyhvolnvpylevoikosmičeskoiplazme
AT sirenkook nelineinyimehanizmgeneraciiélektromagnitnyhvolnvpylevoikosmičeskoiplazme
first_indexed 2025-11-26T00:08:21Z
last_indexed 2025-11-26T00:08:21Z
_version_ 1850592056391499776
fulltext Problems of Atomic Science and Technology. 2007, 1. Series: Plasma Physics (13), p. 87-89 87 NONLINEAR MECHANISM OF ELECTROMAGNETIC WAVES GENERATION IN SPACE DUST PLASMA A.D. Voitsekhovsk , A.K. Yukhimuk, O.K. Sirenko Main astronomical Observatory, National Academy of Sciences of Ukraine, Kyiv, Ukraine We consider a parametric excitation of electromagnetic waves induced by inertial Alfvén wave (IAW) in space dust plasma. The nonlinear dispersion equations describing decay of upper-hybrid wave (UHW) into the IAW and the ordinary electromagnetic wave as well as decay of UNW into the IAW and the left-hand circularly polarized (LHCP) wave are obtained using the three-fluid magnetohydrodynamics. The instability growth rates which depend on dust plasma parameters are found. It is shown that the LPCH wave is preferably excited by the UH pump wave for the parameters of the Saturn's F-ring. PACS: 52.35.-g 1. INTRODUCTION The physical processes in dust plasmas have been studied intensively because of their importance for a number of application in space and laboratory plasmas. Generally, dust particles in plasma are charged by plasma current, photoemission, secondary emission, etc. The interplanetary space, the rings of the giant planets, comet tails, Earth's magnetosphere and ionosphere are Solar system objects with significant amount of dust particles. In recent years there has been much interest in new wave mode that results from the presence of micron-sized charged dust particles in plasma. About a decade ago it was recognized that the dust component may not only modify the usual plasma waves, such as ion acoustic waves and Alfvén waves, but leads to the appearance of new wave type [1,2], e.g., a low frequency mode, in which the inertia is provided by the massive dust component. Most of the studies on waves in a magnetized plasma have dealt with linear theories [3]. However in dust plasma the set of processes take place, for which there are important nonlinear effects, in particular nonlinear wave-wave interaction [4,5]. In the present paper we consider decay of the upper- hybrid pump wave into the IAW and the o-mode and into the IAW and the LHCP wave in dust plasma, which consist from electrons, protons and negatively charged dust particles. 2. BASIC EQUATIONS We consider the upper-hybrid pump wave with: ( ) ( )[ ] ..exp 000000 ckzkxktieEeEE zxzzxx +++−+= ω rrr , xz kk 00 << , propagating in an homogeneously magnetized plasma ( )zeBB rr 00 = . The pump wave decay into IAW with wave vector k r and frequency ω and electromagnetic waves with wave vectors jk r and frequencies jω . It is assumed that the following wave resonance conditions are satisfied: jj kkk rrr +=+= 00 ,ωωω , where j=1, 2 corresponds of o-mode and left-hand circularly polarized wave, respectively. Also we assume that all wave vectors are situated in the xz plane. For studying parametric interaction, we use the three- fluid magnetohydrodynamics: ( ) ( ) ,V1 t α αα α ααααα α α ω n nm TFEeZ m V B ∇−×++= ∂ ∂ vvvrr r ( )αα α Vn n rv ∇−= ∂ ∂ t , t E c j c B ∂ ∂ +=×∇ r rrr 14π , t B c E ∂ ∂ −=×∇ r rr 1 , (1) πρ4=⋅∇ E rr , where ( )dddeeii VnZVnVnej rvvr −−= , ( )ddei nZnne −−=ρ , ( ) αααα αα α VVmBV c eZ F rrrrr ∇−     ×= ~ . The index =i, e, d corresponds to the protons, electrons and dust particles, respectively. The particles density, velocity, electric and magnetic fields are written in the forms: Annnn ~~ 00 ++=α , jA VVVV rrrr ++= 0 , jA EEEE rrrr ++= 0 , jA bbBB rrrr ++= 0 , where 0n and 0B r are the average values of the plasma number density and magnetic field. The subscript A in these expressions corresponds to the IAW. 3. O-MODE GENERATION 3.1. NONLINEAR DISPERSION RELATION FOR DUST IAW Nonlinear dispersion relation for the IAW is (see [6] for the details): NLA P=ϕε , (2) 88 where , 1 22 2 e Adz A Vk κ ωε + −= 22 exe k δκ = , pe e c ωδ = ,       ∂ ∂ + ∂ ∂ + = z F ez j en mViP ez NL ez e e e Ad NL 1 1 2 0 2 ω κ , dod Ad mn B V π4 0= , ( )* 100 * 1 ~~ zz NL ez VnVnej +−= . Using linear expressions for the electron velocity components, electron density perturbations and magnetic field perturbations for the pump wave and o-mode: ( ) ( ) 022 0 0 0022 0 00 0 , ϕ ωω ω ϕ ωω ω Be xBe e y Be x e x k m eiV k m eV − −= − −= , 02 0 2 0 22 0 2 0 000 0 0 0 ~, ϕ ωωω ϕ ω       + − −=−= z Be x e e z e z kkn m enk m eV , z x y z e z E ck bE m eiV 1 1 1 1 1 1 1 , ωω −=−= , we get following expression for the nonlinear dispersion relation for the IAW: * 10 zAA Eϕµϕε = , (3) where nonlinear term is 2 0 2 0 1 2 1 ωω ω κ µ x z e Ad e A kkV m ei + −= . 3.2. NONLINEAR DISPERSION RELATION FOR O-MODE The o-mode propagates along the x axis and has an electric field parallel to the ambient magnetic field. Excluding the magnetic field from Maxwell’s Eq. (1), we obtained an equation for the electric field of the ordinary electromagnetic wave: ( )NLzz pe z nVeiF e E 11 2 11 4 ωπ ω ε +−= , where 222 1 2 11 peck ωωε −−= , ( ) zeAzNL VnVnn 0 ** 0z ~~V += . Using linear expressions for the electron velocity components, electron density perturbations and magnetic field perturbations for the pump wave and IAW: ϕ ω ϕ ω ω Be x e y Be x e x k m eiV k m eV == ,2 , ϕκϕ ω κ 2 2 0 ~, f Te e eeeA ez e z V V T enn k m eV −=−= , ϕ ω 2 Adz x y V c k k ib −= we find the dispersion relation for the o-mode: * 0111 ϕϕµε =zE , (4) where nonlinear term is 22 0 00 2 2 1 Be x Adz x pe e k Vk k m ei ωω ωω ωµ − −= . 3.3. NONLINEAR GROWTH RATE From Eqs. (3) and (4), we obtained the nonlinear dispersion relation for the parametric instability: 2 0 * 1 * 1 ϕµµεε AA = . (5) When we allow for a dissipative part in the wave frequencies, 1γωω ir += and 111 γωω ir += in Eq.(5), we can obtaine the expression for the instability growth rate: 2 1 0 0 01 2 1 2       = ω ω ωω ω γ xxTepe kkVW , where ee x Tn E W 0 2 0 4π = . 4. LHCP WAVE GENERATION 4.1. NONLINEAR DISPERSION RELATION FOR LHCP WAVE Excluding the magnetic field from Maxwell’s Eq. (1), we obtained an equation for the electric field of the LHCP wave: t j t VenE z c t NL L ∂ ∂ −= ∂ ∂ −      ∂ ∂ − ∂ ∂ 22 022 2 2 2 2 44 rr r ππ , (6) where the nonlinear current density is determined by the beating of the pump wave and the IAW ( )NL eeeANL VnVnVnej 20 * 00 * 2 ~~ rrrr ++−= . If we use the linear expressions for the electron velocity components, electron density perturbations and magnetic field perturbations for the pump wave and IAW in Eq. (6) we obtained the nonlinear dispersion relation: * 0222 ϕϕµε =xE , (7) where Be peck ωω ω ωωε + −−= 2 2222 2 2 22 , nonlinear term is 22 0 0 2 2 02 2 2 Be xz epe e kk m ei ωωω ωωκωµ − −= . 4.2. NONLINEAR DISPERSION RELATION FOR DUST IAW The dispersion relation for the IAW is given by Eq. (2) in Sec. 3.1, where components of ponderomotive force Fez and nonlinear current NL ezj are determined by the interaction of UHW and LHCP wave. Using linear expressions for the electron velocity components, electron density perturbations and magnetic field perturbations for the pump wave and LHCP wave, we get the following 89 expression for the nonlinear dispersion relation for the IAW: * 203 xA Eϕµϕε = , (8) where nonlinear term is 2 2 0 0 2 3 1 ωωκ µ zx ee Ad kk m eV i + −= . 4.3 NONLINEAR GROWTH RATE From Eqs. (7) and (8), we obtained the nonlinear dispersion relation for the parametric instability: 2 0 * 32 * 2 ϕµµεε =A . (9) When we allow for a dissipative part in the wave frequencies, 2γωω ir += and 222 γωω ir += in (9), we obtained the following expression for the instability growth rate: 2 1 22 02 2 2 1 2       − = Be e Ad Tepe V VW ωωω ω κ ω γ . CONCLUSIONS We have investigated the nonlinear mechanisms for the generation of electromagnetic waves in β-low space dust plasma. We have studied the nonlinear decay process of the upper-hybrid pump wave into the IAW and the o- mode as well as decay of pump wave into the IAW and the LHCP wave. The source of radiation of the left-hand polarized and ordinary electromagnetic waves is the nonlinear current produced by the resonant interaction of the pump wave with the low-frequency inertial Alfvén wave. We find the magnitudes of the growth rate of instabilities, for typical wave and plasma parameters relevant to the Saturn’s F-ring [4,7]: 410≈dZ , 3 0 1 −≈ cmn d , 34 0 10 −≈ cmn i , eVTT ie 10≈≈ , GB 02.00 ≈ , gmd 1210−≅ , 3 0 10 −≈ cmn e . For decay process UHWàIAW+O-mode the instability growth rate is 110 1 109.5 −−⋅= sγ . For decay process UHWàIAW+LHCP the instability growth rate is 17 2 10 −−= sγ . Our calculations show that the generation of the left-hand polarized electromagnetic wave is faster than that of the o-mode. REFERENCES 1. M.P. Hertzberg, N.F. Cramer, S.V. Vladimirov. Parametric instabilities of Alfven waves in dusty plasma// Physics of Plasmas. 2003, v.10, N8, p. 3160-3167. 2. A.A. Mamun, P.K.Shukla. Linear and nonlinear dust- hydromagnetic waves// Physics of Plasmas. 2003, v.10, N11, p. 4341-4349. 3. P.K. Shukla, I. Kourakis. Low-frequency electromagnetic waves in a Hall-magnetohydrodynamics plasma with charged dust macroparticles// Physics of Plasmas. 2005, v.12, N1, p. 024501-1-014501-4. 4. P.K. Shukla, L. Stenflo. Nonlinearly coupled inertial Alfven and dust acoustic waves in complex plasmas// Physics of Plasmas. 2001, v.8, N8, p. 3838-3841. 5. P.K. Shukla, L. Stenflo. Dynamics of nonlinearly coupled upper-hybrid waves and modified Alfven modes in a magnetized dusty plasma// Physics of Plasmas. 2003, v.10, N11, p. 4572-4574. 6. A.D. Voitsekhovska, A.K. Yukhimuk, E.K. Sirenko. Nonlinear mechanism of inertial Alfvén and electromagnetic waves generation in space dust plasma// Kinem. ta Phys. Selec. Bodies. 2005, v.21, N4, p. 278-287 (in Russian). 7. D.A. Mendis, M. Rosenberg. Cosmic dusty plasma// Annu. Rev. Astron. Astrophys. 1994, v.32, p. 419-463. . , . , . ( ) . , , . , . , F- . . , . , . ( ) . , , . , . , F- .