Development and application of a silicon coordinate detectors
An attempt is made to consider general approach and the techniques for development, investigation and application of multichannel silicon coordinate detectors. Зроблено спробу розглянути загальні підходи і методи розвитку, дослідження і застосування багатоканальних кремнієвих детекторів. Сделана поп...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2003 |
| Автори: | , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2003
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/110712 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Development and application of a silicon coordinate detectors / V.I. Kulibaba, N.I. Maslov, S.V. Naumov, V.D. Ovchinnik, S.M. Potin, A.F. Starodubtsev // Вопросы атомной науки и техники. — 2003. — № 2. — С. 85-88. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-110712 |
|---|---|
| record_format |
dspace |
| spelling |
Kulibaba, V.I. Maslov, N.I. Naumov, S.V. Ovchinnik, V.D. Potin, S.M. Starodubtsev, A.F. 2017-01-06T08:43:47Z 2017-01-06T08:43:47Z 2003 Development and application of a silicon coordinate detectors / V.I. Kulibaba, N.I. Maslov, S.V. Naumov, V.D. Ovchinnik, S.M. Potin, A.F. Starodubtsev // Вопросы атомной науки и техники. — 2003. — № 2. — С. 85-88. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 29.40.Wk https://nasplib.isofts.kiev.ua/handle/123456789/110712 An attempt is made to consider general approach and the techniques for development, investigation and application of multichannel silicon coordinate detectors. Зроблено спробу розглянути загальні підходи і методи розвитку, дослідження і застосування багатоканальних кремнієвих детекторів. Сделана попытка рассмотреть общие подходы и методы развития, исследования и применения многоканальных кремниевых детекторов. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Experimental methods and processing of data Development and application of a silicon coordinate detectors Розвиток і застосування кремнієвих координатних детекторів Развитие и применение кремниевых координатных детекторов Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Development and application of a silicon coordinate detectors |
| spellingShingle |
Development and application of a silicon coordinate detectors Kulibaba, V.I. Maslov, N.I. Naumov, S.V. Ovchinnik, V.D. Potin, S.M. Starodubtsev, A.F. Experimental methods and processing of data |
| title_short |
Development and application of a silicon coordinate detectors |
| title_full |
Development and application of a silicon coordinate detectors |
| title_fullStr |
Development and application of a silicon coordinate detectors |
| title_full_unstemmed |
Development and application of a silicon coordinate detectors |
| title_sort |
development and application of a silicon coordinate detectors |
| author |
Kulibaba, V.I. Maslov, N.I. Naumov, S.V. Ovchinnik, V.D. Potin, S.M. Starodubtsev, A.F. |
| author_facet |
Kulibaba, V.I. Maslov, N.I. Naumov, S.V. Ovchinnik, V.D. Potin, S.M. Starodubtsev, A.F. |
| topic |
Experimental methods and processing of data |
| topic_facet |
Experimental methods and processing of data |
| publishDate |
2003 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Розвиток і застосування кремнієвих координатних детекторів Развитие и применение кремниевых координатных детекторов |
| description |
An attempt is made to consider general approach and the techniques for development, investigation and application of multichannel silicon coordinate detectors.
Зроблено спробу розглянути загальні підходи і методи розвитку, дослідження і застосування багатоканальних кремнієвих детекторів.
Сделана попытка рассмотреть общие подходы и методы развития, исследования и применения многоканальных кремниевых детекторов.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/110712 |
| citation_txt |
Development and application of a silicon coordinate detectors / V.I. Kulibaba, N.I. Maslov, S.V. Naumov, V.D. Ovchinnik, S.M. Potin, A.F. Starodubtsev // Вопросы атомной науки и техники. — 2003. — № 2. — С. 85-88. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT kulibabavi developmentandapplicationofasiliconcoordinatedetectors AT maslovni developmentandapplicationofasiliconcoordinatedetectors AT naumovsv developmentandapplicationofasiliconcoordinatedetectors AT ovchinnikvd developmentandapplicationofasiliconcoordinatedetectors AT potinsm developmentandapplicationofasiliconcoordinatedetectors AT starodubtsevaf developmentandapplicationofasiliconcoordinatedetectors AT kulibabavi rozvitokízastosuvannâkremníêvihkoordinatnihdetektorív AT maslovni rozvitokízastosuvannâkremníêvihkoordinatnihdetektorív AT naumovsv rozvitokízastosuvannâkremníêvihkoordinatnihdetektorív AT ovchinnikvd rozvitokízastosuvannâkremníêvihkoordinatnihdetektorív AT potinsm rozvitokízastosuvannâkremníêvihkoordinatnihdetektorív AT starodubtsevaf rozvitokízastosuvannâkremníêvihkoordinatnihdetektorív AT kulibabavi razvitieiprimeneniekremnievyhkoordinatnyhdetektorov AT maslovni razvitieiprimeneniekremnievyhkoordinatnyhdetektorov AT naumovsv razvitieiprimeneniekremnievyhkoordinatnyhdetektorov AT ovchinnikvd razvitieiprimeneniekremnievyhkoordinatnyhdetektorov AT potinsm razvitieiprimeneniekremnievyhkoordinatnyhdetektorov AT starodubtsevaf razvitieiprimeneniekremnievyhkoordinatnyhdetektorov |
| first_indexed |
2025-11-25T23:28:30Z |
| last_indexed |
2025-11-25T23:28:30Z |
| _version_ |
1850580953534038016 |
| fulltext |
DEVELOPMENT AND APPLICATION OF
A SILICON COORDINATE DETECTORS
V.I. Kulibaba, N.I. Maslov, S.V. Naumov, V.D. Ovchinnik, S.M. Potin, A.F. Starodubtsev
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
e-mail: nikolai.maslov@kipt.kharkov.ua
An attempt is made to consider general approach and the techniques for development, investigation and
application of multichannel silicon coordinate detectors.
PACS: 29.40.Wk
1. INTRODUCTION
Silicon coordinate detectors (SCD) are widely used
in physics, health care and various branches of
technology [1,2]. SCD are working at room
temperatures, what is very convenient for creation of a
tracking system and multiplicity detectors in high
energy physics experiment. There are designed multi-
layer registering systems including tens square meters
of silicon plates consisting of some millions of separate
detectors [1,3].
SCD are designed and investigated by KhIPT groups
more then 10 years. From 1995, KhIPT group is
working on silicon microstrip detector investigation in
CERN ALICE Collaboration. The single-sided full-
scale prototype of microstrip detector for ALICE
experiment has been developed and manufactured with
CERN tightly cooperating since 1996 (Fig. 1),
(http://alice.web.cern.ch/Alice/pictures/detectors/97-Si-
strip-single-side.gif).
Fig. 1. Micrograph of the single-sided full-scale
prototype of microstrip detector for ALICE experiment
The microstrip detector was developed to be the p+-
side of the double-sided microstrip detector (DSMD).
The single-sided detectors were used to investigate the
influence of an additional insulating Si3N4 layer on
leakage currents, the breakdown voltage of coupling
capacitors, the interstrip resistance, etc. [4,5].
In 1998, the full-scale prototype of a DSMD was
manufactured; studies were made of the static
characteristics of the detector and their behavior under a
10-year dose of the ALICE experiment [6,7]. The
experimental technical base was constructed at NSC
KhIPT for design, production and studying the double
sided planar and double sided microstrip detectors [8,9],
<http://www.kipt.kharkov.ua/Baseinfeng/ALICE/>.
Simultaneously with the main microstrip detector,
the planar diode test structures are designed [4,5],
(Fig. 2). Diode test structures serve for studying the
quality of silicon, for measuring the depleting voltage
by a capacitive technique, for preliminary studies of the
microstrip detector characteristics and evaluation of
their behaviour under irradiation. Their application
permits one to shorten the consumption of microstrip
detectors at the stage of research and development and
of studying the characteristics of the microstrip detector.
Diode test structures may have their own importance as
the samples of planar detectors and photo-diodes for
applying as radiation probes in physics and medical
practice [4,5].
Fig. 2. Micrograph of the silicon planar detector: 1
is the active zone of the detector, 6 is the protective
ring, 7 is the ring Al contact of the active zone, 8 and 9
are the contact pads of the protective ring and the
active zone
Silicon planar detectors were tested with the charge
sensitive amplifier and the analog-to-digital converter
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2003, № 2.
Series: Nuclear Physics Investigations (41), p. 85-88. 85
(ADC) of NSC KhIPT design. Spectra below (Fig. 3)
show energy resolution 1.4 keV for 2x2 mm2 planar
detector.
Fig. 4 shows the spectral distribution for the
photodiode-scintillator detecting system based on CsI
scintillator and silicon spectrometric photodiode.
0 100 200 300 400 500 600 700 800 900
0
1000
2000
3000
N
um
be
r o
f c
ou
nt
s
Number of channels
Fig. 3. Spectral distribution of 241Am 2x2 mm2 pad
detector at room temperature
0 50 100 150 200 250 300
0
1000
2000
3000
4000
5000
6000
N
um
be
r o
f c
ou
nt
s
Number of channels
Fig. 4. Spectral distribution for the photodiode-
scintillator detecting system based on CsI scintillator
and silicon spectrometric photodiode (5x5 mm2)
An attempt is made to consider a general approach
and the techniques for development, investigation and
application of multichannel silicon coordinate detectors.
2. SPECIALITY OF COORDINATE
DETECTORS
Developed during last decades microelectronics
technologies are used for production of multichanel
silicon coordinate detectors (MSCD). However,
construction and working principles of detectors have
one radical difference in comparison with tradition
integral microelectronics. Large number of detecting
channels (up to several thousand) is not connected in
common logic network. This fact is complicating,
changing in principle and is doing the quality control as
key element for all stages of MSCD design and
production.
The strict requirements to MSCD with respect to
efficiency necessitate the careful monitoring quality
before assembling a detector module. The full set of
measurements includes a large number of measuring
techniques. However, at the final stage, when a large
quantity of detectors are produced, it is necessary to
determine a minimum number of measuring techniques
for full testing that can be used at automated measuring
stations.
The full set of techniques for measuring MSCD
characteristics, in our opinion, may be grouped into six
levels of measurements:
element technological measurements;
measuring physical static characteristics of MSCD;
measuring the good-to-bad MSCD element ratio;
test measurements of MSCD dynamic
characteristics;
studying MSCD under conditions of an actual
experiment;
monitoring the quality of a large number of MSCD.
Each level possesses its own features and includes
several measuring techniques.
3. ELEMENT TECHNOLOGICAL
MEASUREMENTS
Technological test structures are designed and
created beside the main detector for the first level of
measurements [1,2]. One measures mainly the
resistance of implanted layers, contact resistance and
capacitance. The measurements are performed during
the technological process on the plate to adjust and
monitor the technological process.
4. MEASURING MSCD STATIC
CHARACTERISTICS
Measuring static characteristics of MCSD,
especially those of double-sided ones, requires a
specialised equipment [3]. Static characteristics
measurement is complicated, prolonged and, perhaps
impossible for full-scale performance at industrial
plants.
Measuring static characteristics of MSCD includes:
- measuring leakage currents of the detector
active zone, the guard ring and separate
detecting elements (at the test structure) versus
voltage;
86
- measuring the bulk capacitance of test structures
and MSCD versus voltage and determining the
depletion voltage;
- measuring the capacitance of coupling
capacitors;
- measuring the magnitude of the strip biasing
resistor;
- measuring the interelements leakage currents on
test structures versus voltage and determining
the interelements resistance;
- measuring the interelements capacitance versus
voltage.
On the ground of the analysis of the data obtained
the optimum mode of the MSCD operation is
determined and the regime of testing good-to-bad
MSCD element ratio is chosen.
Starting from this level, it is necessary to study the
variation of detector characteristics resulting from
irradiation, i.e., radiation tolerance. After the MSCD
radiation test is completed, the full set of measurement
is repeated.
5. MEASURING THE GOOD-TO-BAD MSCD
ELEMENT RATIO
Measuring the good-to-bad ratio of the MSCD
elements (p/n junctions of the detecting elements,
integrated capacitors and resistors) even at the stage of
the detector development is impossible without the
automated (semi-automated) probe station [3]. It is
explained by the necessity of measuring several
parameters of a large number of strips. At this stage a
necessity arises to determine the minimum number of
measuring techniques for full testing the multichannel
detector with respect to the good-to-bad element ratio.
In this section the possible MSCD defects are
considered. Some of techniques for revealing these
defects that may be applied for automatic measurement
are also described.
5.1 DEFECTS
All defects affecting the good-to-bad detecting
element ratio may be divided into three groups:
1. defects of p+ and n+ implantation;
2. defects of coupling capacitors;
3. defects of contacts and biasing resistors.
Group 1 includes the following defects:
- Breakdown of the p-n junction and n+
implantation. This defect increases the leakage
current of the detecting element;
- Short-circuiting p+ implantation. This defect
increases the interstrip capacitance and the
interstrip leakage current;
Group 2 includes the following defects:
- Short-circuiting of aluminium layers of
integrated coupling capacitors. This defect gives
rise to the increase of the capacitance and the
leakage current of coupling capacitors
proportional to the number of short-circuited
detecting elements;
- Breaking an aluminium layers of integrated
coupling capacitors. This defect gives rise to the
decrease of the capacitance and leakage current
of coupling capacitors;
- Breakdown of a coupling capacitor. This defect
gives rise to the strong increases of capacitance
and leakage current of the capacitor.
Group 3 contains the following defects:
- Variation of the bias resistor value. This defect
varies the voltage drop across the biasing
resistor;
- Lack of contact and breaking of integrated
polysilicon resistor. This defect strongly increases
the voltage drop across the biasing resistor.
5.2 MEASURING TECHNIQUES APPLIED FOR
AUTOMATED MEASUREMENTS
In order to reveal the defects described in preceding
section the measurements of five parameters may be
used:
- capacitance and leakage current of coupling
capacitors;
- strip leakage current;
- interstrip resistance;
- interstrip capacitance.
Measuring these four parameters enables one to
reveal all defects listed above. The capacitance and the
leakage current of coupling capacitors reveal all defects
associated with coupling capacitors. The voltage drop
across the biasing resistor reveals the p-n junction
breakdown, breaking p+ and n+ implantation as well as
variation of the biasing resistor value and the lack of
contact between p+ detecting element and the basing
line. Variation in the interstrip capacitance reveals the
defects associated with short-circuiting and cuts of p+
implantation.
For performing the measurements in the automated
mode the detector is connected to the voltage supply via
a special extender.
As a result of measuring one parameter we get a file
containing strip numbers and the values of the
parameter measured (for coupling capacitors there are
two parameters, i.e., the capacitance and the leakage
current). Performing the measurements considered
above enables one to determine the efficiency of a
future detector, its energy resolution, signal-to-noise
ratio for a particle with minimum ionisation etc with
high accuracy. However without test measurements of
MSCD dynamic characteristics the performance of the
initial testing of the detector cannot be regarded as
completed.
6. TEST MEASUREMENTS OF DYNAMIC
CHARACTERISTICS
Performing the measurements of MD dynamic
characteristics enables one to obtain the signal-to-noise
ratio as a universal characteristic of a detector. To this
end one can apply isotope sources of electrons and
gamma radiation. In the first case the measurements
within the total spectrum may be performed for the
detector as a whole and for each separate strip, whereas
in the second case they are made only for each strip
separately.
87
The test module of special design is manufactured
for dynamic tests [10]. Apart from the detector it
comprises the chips of the readout electronics, printed
circuits for mounting chips and supplying control
signals for them, microcables for welding contact pads
of chips and the detector. Printed circuit boards (PCB)
are designed in KIPT and use a full surface nickel
coating that provides easy and durable bonding
aluminium wires and microcables to contact pads on the
PCB at low cost. Also this coating allows a good
surface mounting for SMD components.
On using the source of electrons one determines the
signal-to-noise ratio for a particle with minimum
ionisation over all strips at once (Fig. 5). To this end
one applies a fast analogue-to-digital converter with
memory and specially designed software for the
spectrum accumulation permitting to determine the
clusters during the accumulation process.
100 200 300 400 500 600 700 800 900 1000
0
20
40
60
80
100
120
140
160
180
N
u
m
b
e
r
O
f
C
o
u
n
ts
Cluster, mV
Fig. 5. Determination of the signal-to-noise ratio by
using an isotopic electron source
Application of a gamma source enables one to
determine the energy resolution with high accuracy.
Fig. 6 shows determination of the signal-to-noise ratio
by using an isotopic gamma source 241Am.
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500
10000
N
um
be
r
of
c
ou
nt
s
Channels
Fig. 6. Determination of the signal-to-noise ratio by
using an isotopic gamma source 241Am
7. STUDYING DMSD UNDER CONDITIONS
OF AN ACTUAL EXPERIMENT
Performing tests anticipates a beam experiment with
the conditions closest to ones of an actual experiment.
The beam experiment enables one to measure the
spatial resolution of the detector with higher accuracy as
well as to determine a possible variation of the detector
efficiency in an actual module.
8. MONITORING THE QUALITY OF A
LARGE NUMBER OF MSCD ON THE
MODULE PRODUCTION STAGE
Measurement procedure on the stage of the MSCD
production may consist of two main parts. In first part
the typical physical characteristics are determined for
each detector and detector long-term stability should be
measured. In second measurement part the accordance
of each strip characteristics to official detector
specification are controlled and number of bad strips are
determined. Each of both parts requires design and
development specialised automated probe stations.
It is necessary, because the monitoring of MSCD
quality requires the performance of a large number of
measurements over a large number of detectors. Perhaps
this problem should be solved via reasonable reduction
in the number of measurements as well as via an
increase in the number of a different automated probe
stations. Both ways of solution are feasible and they will
be realised depending on particular circumstances: total
number of detectors, quality of detectors and conditions
of testing. This monitoring of DSMD before detector
modules assembling is finished in form a data sheet for
each detector.
REFERENCES
1. G. Batignoni et all. Beauty physics and
double-sided Si microstrip detectors // Nucl. Phys.
B (Proc. Suppl.). 1991, v. 23A, p. 297-306.
2. Fabio Sauli. High-rate, position-sensitive
radiation detectors: recent developments and
application in particle physics, medicine and
technology. CERN-PRE/94-150, 24 August 1994.
3. ALICE. Technical proposal. CERN/
LHCC/95-71 LHCC/P3 15 December 1995.
4. A.P. de Haas, P. Kuijer, V. Kulibaba,
N. Maslov, V. Perevertailo, S. Potin,
A. Starodubtsev. Radiation tolerance of single-
sided microstrip detector with Si3N4 insulator.
ALICE/PUB 98-24, 5 Nov. 1998.
5. N. Maslov, V. Kulibaba, S. Potin,
A. Starodubtsev, P. Kuijer, A.P. de Haas,
V. Perevertailo. Radiation tolerance of single-sided
microstrip detector with Si3N4 insulator // Nuclear
Physics B (Proc. Suppl.). 1999, №78, p. 689-694.
6. A.P. de Haas, P. Kuijer, V. Kulibaba,
N. Maslov, V. Perevertailo, S. Potin,
A. Starodubtsev. Characteristics and radiation
tolerance of a double-sided microstrip detector
with polysilicon biasing resistors. CERN,
ALICE/99-21, Internal Note/SIL, 6 April 1999.
7. A.P. de Haas, P. Kuijer, V.I. Kulibaba,
N.I. Maslov, V.L. Perevertailo, V.D. Ovchinnik,
S.M. Potin, A.F. Starodubtsev. Characteristics and
radiation tolerance of a double-sided microstrip
detector with polysilicon biasing resistors //
88
Problems of Atomic Science and Technology. Ser.:
NPI. 2000, №2(36), p. 26-33.
8. P. Kuijer, A. Kaplij, V. Kulibaba, N. Maslov,
V. Ovchinnik, S. Potin, A. Starodubtsev. Control
complex for a double-sided microstrip detector
production and tests. CERN, ALICE/99-45,
Internal Note/ITS, 5 October 1999.
9. P. Kuijer, A. Kaplij, V. Kulibaba, N. Maslov,
V. Ovchinnik, S. Potin, A. Starodubtsev. Control
complex for a double-sided microstrip detector
production and tests // Problems of Atomic Science
and Technology. Ser.: NPI. 2000, 2(36), p. 41-45.
10. V.I. Kulibaba, N.I. Maslov, S.V. Naumov,
V.D. Ovchinnik, I.M. Prokhorets. Readout
electronics for multichannel detectors // Problems
of Atomic Science and Technology. Ser.: NPI.
2001, №5(39), p. 177-179.
89
|